Estimating cases for COVID-19 in South Africa
Update: 19 May 2020

Sheetal Silal1, Juliet Pulliam2, Gesine Meyer-Rath3,4, Brooke Nichols3,4, Lise Jamieson3, Zaid Kimmie5, & Harry Moultrie5
on behalf of the South African COVID-19 Modelling Consortium

1 Modelling and Simulation Hub, Africa (MASHA), University of Cape Town, South Africa
2 South African DSI-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), University of Stellenbosch, South Africa
3 Health Economics and Epidemiology Research Office (HE2RO), University of the Witwatersrand, Johannesburg, South Africa
4 Boston University School of Public Health, US
5 National Institute for Communicable Diseases (NICD), South Africa
Introduction

- South African COVID-19 Modelling Consortium
- Uncertainty regarding both the true scale and spatial distribution as a result of PUI criteria and testing coverage
- Models developed by MASHA, SACEMA and HE2RO in conjunction with the NICD
- Extensive and ongoing input from clinicians, virologists, intensivists and epidemiologists to refine key model assumptions and parameters
- Projections will be updated weekly
Projections in Context

- Projections at a population level do not capture clustering of cases
 - E.g. Sharp increases in cases in the Eastern Cape
 - A spatial model with additional granularity is required (forthcoming)

- Models project total need for hospital beds and ICU beds
 - Do not account for stricter criteria to entry and existing capacity

- Population behaviour/response to mortality
 - Lessons from Ebola epidemic (adaptive behaviour to decrease mortality)

- Projections will improve with new data
 - Hospitalisation (public and private)
 - Length of stay

- Short term vs Long term Projections
Users of model outputs

- Clinicians
- Public Health
- Laboratory
- Research
- Covid Modelling Consortium
- Costing Working Group
- National Health Laboratory Service
- Emergency Operations Centre
- National Institute of Communicable Diseases
- National Ventilator Project
- National Health Laboratory Service
- National Venilator Project
- Covid Conditional Grant
- National Treasury
- Minister of Public Works and Infrastructure
- Minister of Trade and Industry
- Minister of Health
- Presidential Covid Command Council
- Incident Response Committee
National COVID Models

- **National COVID-19 Epi Model**
 - Generalised SEIR model
 - Disease severity (asymptomatic, mild, severe, critical)
 - Treatment pathway (outpatients, non-ICU, ICU)

- **National COVID-19 Cost Model**
 - Inputs from a range of resources to represent the type, number and price of ingredients to cost response
 - Inform resource requirements and predict where gaps may arise based on available resources

Diagram

Diagram showing the flow of disease progression with nodes for different stages of infection and treatment. Each stage is associated with specific numbers (1-16) that likely represent transition probabilities or time periods.
Two scenarios

Assumption: Level 4 continues until 31 May followed by social distancing measures

Optimistic scenario
- Lockdown reduced transmissibility by 60%
- Level 4 from 1 May to 31 May: 35%
- Social distancing measures after 31 May reduces transmissibility by 20%

Pessimistic scenario
- Lockdown reduced transmissibility by 40%
- Level 4 from 1 May to 31 May: 25%
- Social distancing measures after 31 May reduces transmissibility by 10%
Short-term projections

Detected Cases: 30,433 (18,710, 54,540)

ICU bed threshold (~3,300 beds)
Long-term projections
Long-term projections: Impact of lock-down

• Greater uncertainty

• Lockdown has flattened the curve and pushed the peak later

Key Assumption: Asymptomatic proportion of cases: 75%
Long term projections: National

Current trajectory of detected cases: Optimistic
Provincial Projections
Eastern Cape

Current trajectory of detected cases: Pessimistic

Free State

Current trajectory of detected cases: Better than optimistic
Current trajectory of detected cases: Optimistic

Gauteng

Kwa-Zulu Natal
Current trajectory of detected cases:

- **Limpopo**
- **Mpumalanga**
- **Northern Cape**
- **North West**

General bed threshold

Optimistic
Western Cape

Current trajectory of detected cases: Pessimistic
Conclusions

• The initial social distancing and lockdown measures have worked:
 • Epidemic curve has flattened and peak been delayed
 • Extension of lockdown to 5 weeks bought us critical additional time to ramp up community testing and prepare mitigation measures for the oncoming wave

• Peak in active cases likely between early July (pessimistic) and early Aug (optimistic). This will be affected by post-lockdown measures.

• Considerable variation in timing and scale of peaks between Provinces. Variation will be greater between districts and sub-districts.

• Under almost all scenarios hospital and ICU capacity will be exceeded though timing and extent is uncertain. Requires a flexible approach to resource acquisition with initial purchases now and additional orders as more information becomes available
Disease severity with age-specific adjustment for South Africa

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Severe cases (hospitalized)</th>
<th>Critical (of severe)</th>
<th>Fatal (of critical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 9</td>
<td>2%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>10 to 19</td>
<td>2%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>20 to 29</td>
<td>10%</td>
<td>12%</td>
<td>5%</td>
</tr>
<tr>
<td>30 to 39</td>
<td>15%</td>
<td>16%</td>
<td>5%</td>
</tr>
<tr>
<td>40 to 49</td>
<td>21%</td>
<td>19%</td>
<td>7%</td>
</tr>
<tr>
<td>50 to 59</td>
<td>25%</td>
<td>23%</td>
<td>17%</td>
</tr>
<tr>
<td>60 to 69</td>
<td>31%</td>
<td>25%</td>
<td>28%</td>
</tr>
<tr>
<td>70 to 79</td>
<td>40%</td>
<td>30%</td>
<td>34%</td>
</tr>
<tr>
<td>80+</td>
<td>47%</td>
<td>30%</td>
<td>83%</td>
</tr>
</tbody>
</table>

Source: Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) — CDC COVID-19 Response Team, United States, February 12–March 16, 2020

Of those with symptomatic infection

~96% Mild
~2.8% Severe
~1.2% Critical

Age-distribution taken into account, provincially and by social vulnerability index.
Key Model Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value*(range)</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infection severity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of cases that are asymptomatic</td>
<td>75%</td>
<td>[1], [2], [3]</td>
</tr>
<tr>
<td>Mild to moderate cases among the symptomatic</td>
<td>(95.64%, 96.78%)</td>
<td>[5]</td>
</tr>
<tr>
<td>Severe cases among the symptomatic</td>
<td>(2.46%-3.64%)</td>
<td></td>
</tr>
<tr>
<td>Critical cases among the symptomatic</td>
<td>(1.16%-1.45%)</td>
<td></td>
</tr>
<tr>
<td>Proportion of cases that are fatal</td>
<td>(0.30%, 0.412%)</td>
<td>[4], [5]</td>
</tr>
<tr>
<td>Timeframes & treatment durations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time from infection to onset of infectiousness</td>
<td>4 days (2-0-9-0)</td>
<td>[4], [6], [7], [8], [9], [10] with input from analysis of NICD data.</td>
</tr>
<tr>
<td>Time from onset of infectiousness to onset of symptoms</td>
<td>2 days (1-0-4-0)</td>
<td></td>
</tr>
<tr>
<td>Duration of infectiousness from onset of symptoms</td>
<td>5 days</td>
<td></td>
</tr>
<tr>
<td>Time from onset of mild symptoms to testing</td>
<td>4 days (2.0-4.0)</td>
<td></td>
</tr>
<tr>
<td>Time from onset of symptoms to hospitalisation</td>
<td>5 days (4-0–8-0)</td>
<td></td>
</tr>
<tr>
<td>Time from onset of symptoms to ICU admission</td>
<td>9 days (8-0–17-0)</td>
<td></td>
</tr>
<tr>
<td>Duration of hospital stay</td>
<td>12 days (7-0–16-0)</td>
<td></td>
</tr>
<tr>
<td>Duration from ICU admission to discharge</td>
<td>18 days (14-0–18-0)</td>
<td></td>
</tr>
<tr>
<td>Duration from ICU admission to death</td>
<td>5 days (4-0-7-0)</td>
<td></td>
</tr>
</tbody>
</table>

* Parameter values have been selected for use by an expert panel of clinicians on the SA Covid-19 Modelling Consortium. Ranges are informed by sources.

References