Estimating cases for COVID-19 in South Africa Update: 19 May 2020

Sheetal Silal¹, Juliet Pulliam², Gesine Meyer-Rath^{3,4}, Brooke Nichols^{3,4}, Lise Jamieson³, Zaid Kimmie⁵, & Harry Moultrie⁵

on behalf of the South African COVID-19 Modelling Consortium

¹ Modelling and Simulation Hub, Africa (MASHA), University of Cape Town, South Africa

² South African DSI-NRF Centre of Excellence in Epidemiological Modelling and Analysis (**SACEMA**), University of Stellenbosch, South Africa

³ Health Economics and Epidemiology Research Office (HE²RO), University of the Witwatersrand, Johannesburg, South Africa

⁴ Boston University School of Public Health, US

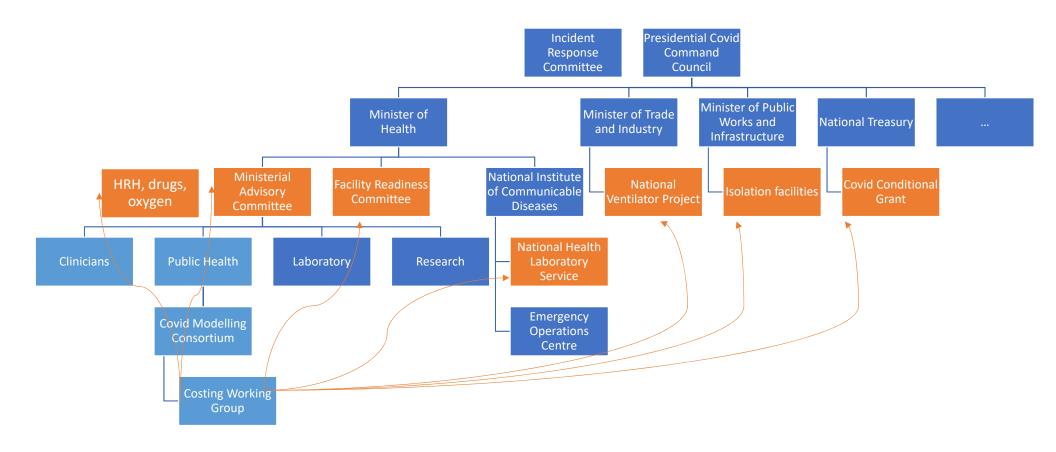
⁵National Institute for Communicable Diseases (NICD), South Africa

Introduction

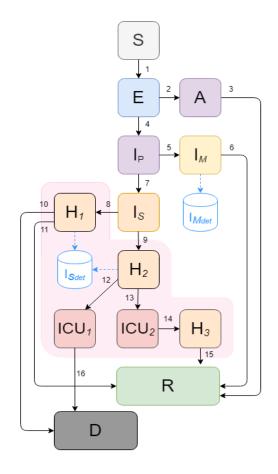
- South African COVID-19 Modelling Consortium
- Uncertainty regarding both the true scale and spatial distribution as a result of PUI criteria and testing coverage
- Models developed by MASHA, SACEMA and HE2RO in conjunction with the NICD
- Extensive and ongoing input from clinicians, virologists, intensivists and epidemiologists to refine key model assumptions and parameters
- Projections will be updated weekly

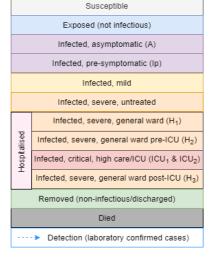
COVID-19 STATISTICS IN SA

Learn more to Be READY for #COVID19 www.sacoronavirus.co.za


NICD Hotline: 0800 029 999 WhatsApp 'Hi' to 0600 123 456

Projections in Context


- Projections at a population level do not capture clustering of cases
 - E.g. Sharp increases in cases in the Eastern Cape
 - A spatial model with additional granularity is required (forthcoming)
- Models project total need for hospital beds and ICU beds
 - Do not account for stricter criteria to entry and existing capacity
- Population behaviour/response to mortality
 - Lessons from Ebola epidemic (adaptive behaviour to decrease mortality)
- Projections will improve with new data
 - Hospitalisation (public and private)
 - Length of stay
- Short term vs Long term Projections


Users of model outputs

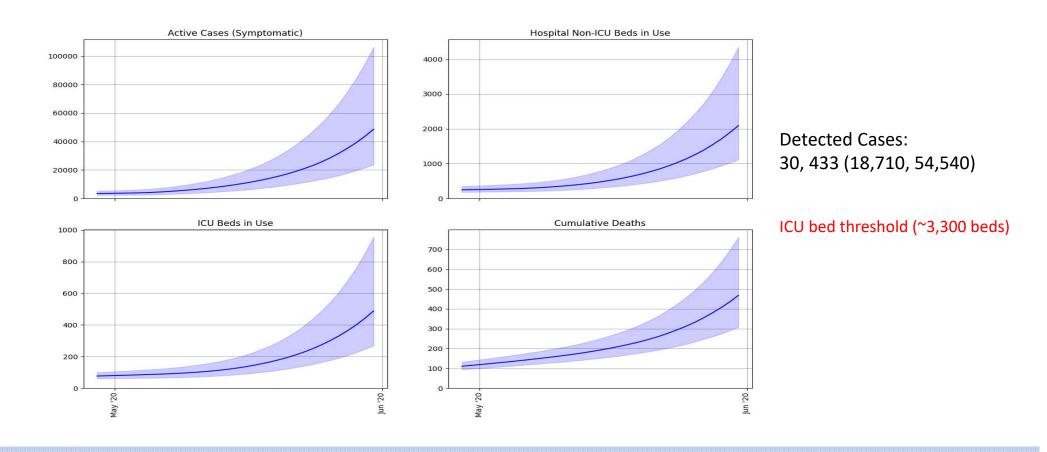
National COVID Models

- National COVID-19 Epi Model
 - Generalised SEIR model
 - Disease severity (asymptomatic, mild, severe, critical)
 - Treatment pathway (outpatients, non-ICU, ICU)
- National COVID-19 Cost Model
 - Inputs from a range of resources to represent the type, number and price of ingredients to cost response
- Inform resource requirements and predict where gaps may arise based on available resources

- Force of infection
- Latent period till asymptomatic infectiousness
- 3. Duration of asymptomatic infectiousness
- 4. Latent period till pre-symptomatic infectiousness
- Mild cases
- 6. Duration of infectiousness (mild cases)
- 7. Severe cases
- 8. Hospitalisation of severe cases
- 9. Hospitalisation of critical cases (prior to ICU)
- 10. Mortality (severe, hospitalised cases)
- 11. Duration of hospitalisation (severe cases)
- 12. Progress from severe to critical (ICU admission)
- 13. Progress from severe to critical (ICU admission)
- 14. Duration of ICU stay for survivors
- 15. Duration of hospitalisation post-ICU
- 16. Mortality (critical, ICU cases)

Two scenarios

Assumption: Level 4 continues until 31 May followed by social distancing measures

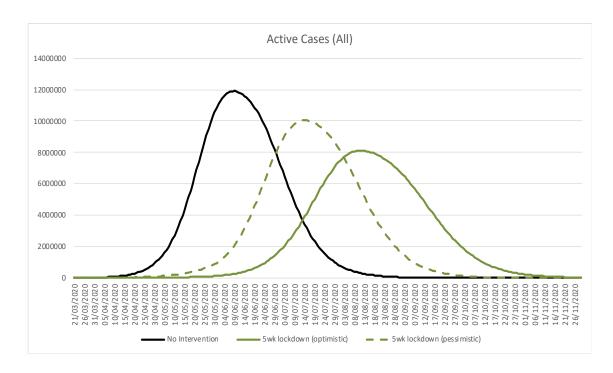

Optimistic scenario

- Lockdown reduced transmissibility by 60%
- Level 4 from 1 May to 31 May: 35%
- Social distancing measures after 31 May reduces transmissibility by 20%

Pessimistic scenario

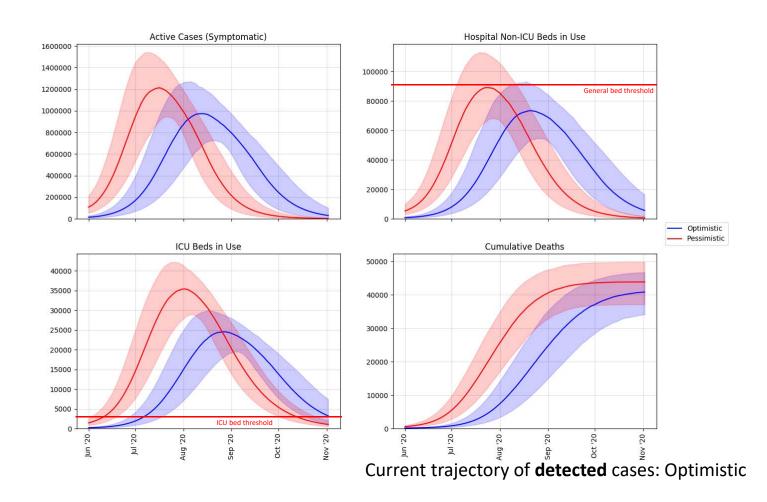
- Lockdown reduced transmissibility by 40%
- Level 4 from 1 May to 31 May: **25**%
- Social distancing measures after 31 May reduces transmissibility by 10%

Short-term projections

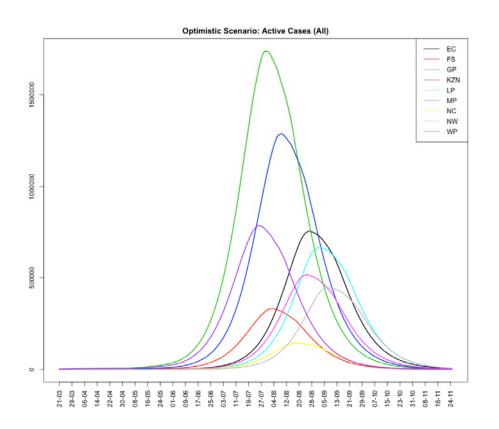


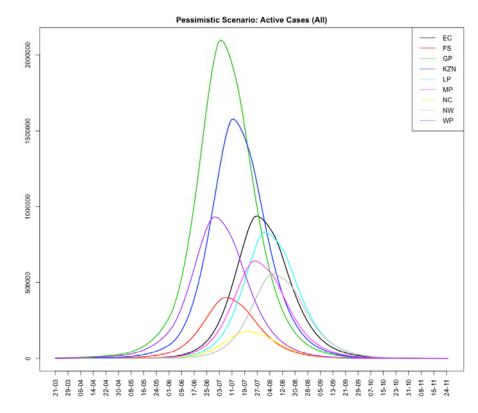
Long-term projections

NATIONAL

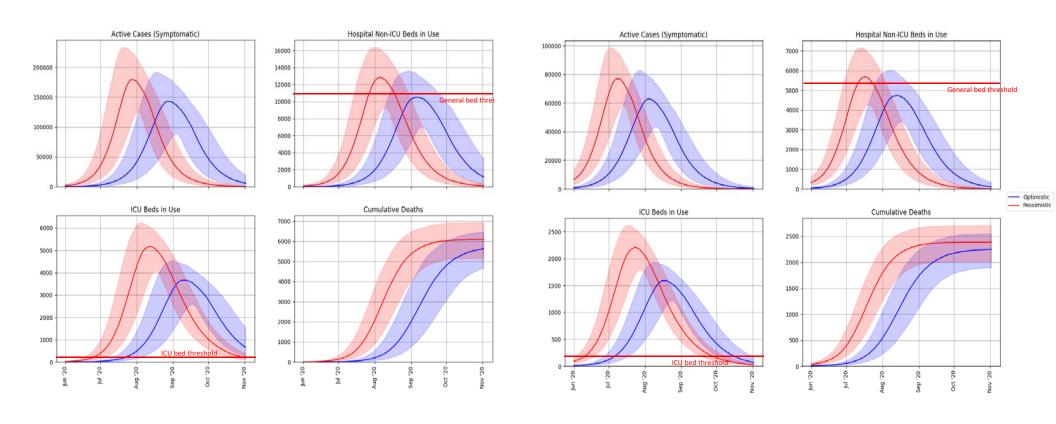

Long-term projections: Impact of lock-down

- Greater uncertainty
- Lockdown has flattened the curve and pushed the peak later



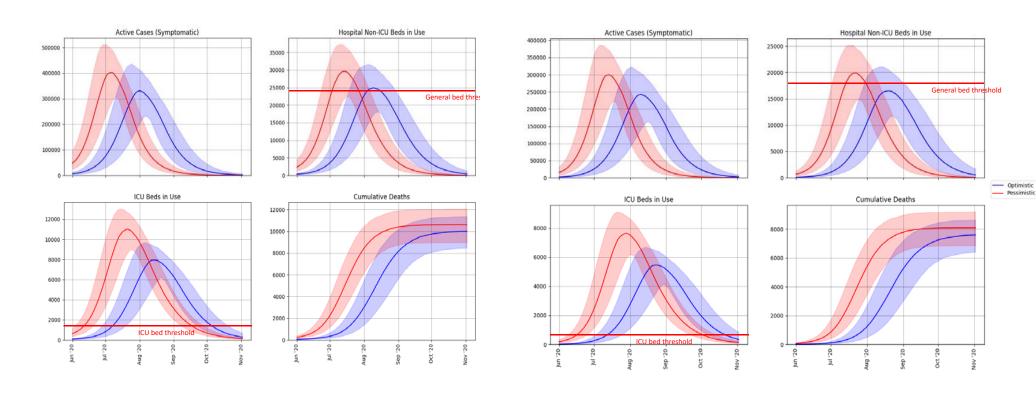

Key Assumption: Asymptomatic proportion of cases: 75%

Long term projections: National


Provincial Projections

Eastern Cape

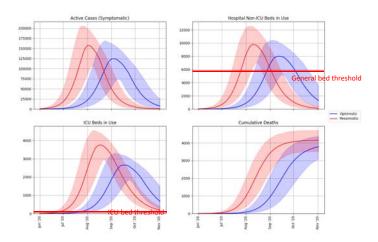
Free State

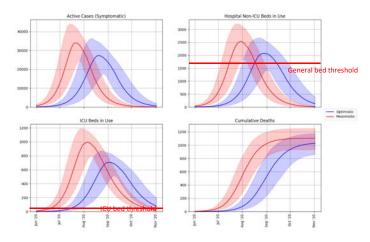


Current trajectory of **detected** cases: Pessimistic

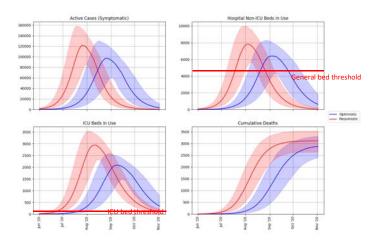
Current trajectory of **detected** cases: Better than optimistic

Gauteng


Kwa-Zulu Natal

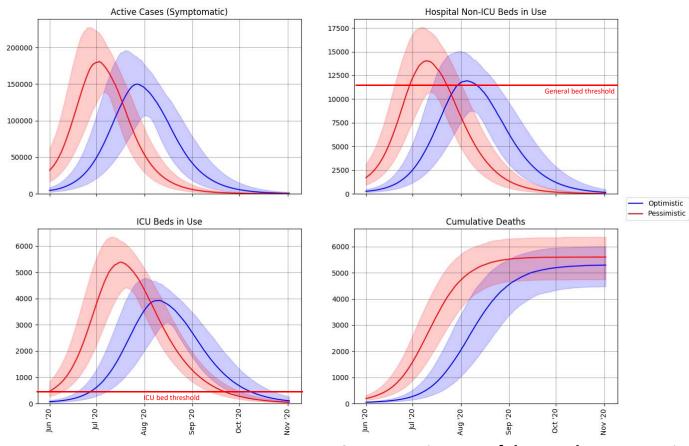

Current trajectory of **detected** cases: Optimistic

Current trajectory of **detected** cases: Optimistic


Limpopo

Northern Cape

Mpumalanga

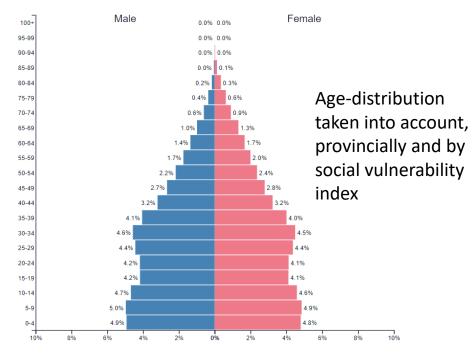


North West

Current trajectory of **detected** cases: Optimistic

Western Cape

Current trajectory of **detected** cases: Pessimistic


Conclusions

- The initial social distancing and lockdown measures have worked:
 - Epidemic curve has flattened and peak been delayed
 - Extension of lockdown to 5 weeks bought us critical additional time to ramp up community testing and prepare mitigation measures for the oncoming wave
- Peak in active cases likely between early July (pessimistic) and early Aug (optimistic). This will be affected by post-lockdown measures.
- Considerable variation in timing and scale of peaks between Provinces.
 Variation will be greater between districts and sub-districts.
- Under almost all scenarios hospital and ICU capacity will be exceeded though timing and extent is uncertain. Requires a flexible approach to resource acquisition with initial purchases now and additional orders as more information becomes available

Disease severity with age-specific adjustment for South Africa

	Severe cases (hospitalized) of confirmed cases	Critical (of severe)	Fatal (of critical)
0 to 9	2%	0%	0%
10 to 19	2%	0%	0%
20 to 29	10%	12%	5%
30 to 39	15%	16%	5%
40 to 49	21%	19%	7%
50 to 59	25%	23%	17%
60 to 69	31%	25%	28%
70 to 79	40%	30%	34%
80+	47%	30%	83%

Source: Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) — CDC COVID-19 Response Team, United States, February 12–March 16, 2020

Of those with symptomatic infection

~96% Mild

~2.8% Severe

~1.2% Critical

Key Model Parameters

	Parameter	Value*(range)	Sources	
Infection severity**	Proportion of cases that are asymptomatic	75%	[1], [2], [3]	
	Mild to moderate cases among the symptomatic	(95.64%, 96.78%)	[5]	
	Severe cases among the symptomatic	(2.46%-3.64%)		
	Critical cases among the symptomatic	(1.16%-1.45%)		
	Proportion of cases that are fatal	(0.30%, 0.412%)	[4], [5]	
Timeframes & treatment durations	Time from infection to onset of infectiousness	4 days (2·0-9·0)		
	Time from onset of infectiousness to onset of symptoms	2 days (1·0-4·0)		
	Duration of infectiousness from onset of symptoms	5 days	[4], [6], [7], [8], [9], [10]	
	Time from onset of mild symptoms to testing	4 days (2.0-4.0)		
	Time from onset of symptoms to hospitalisation	5 days (4·0–8·0)	with input from analysis of NICD data.	
	Time from onset of symptoms to ICU admission	9 days (8·0–17·0)		
	Duration of hospital stay	12 days (7·0–16·0)		
	Duration from ICU admission to discharge	18 days (14·0–18·0)		
	Duration from ICU admission to death	5 days (4.0-7.0)		

^{*} Parameter values have been selected for use by an expert panel of clinicians on the SA Covid-19 Modelling Consortium. Ranges are informed by sources.

^{**} Accounts for population age structure in South Africa [11].

References

- 1. Inui S, Fujikawa A, Jitsu M, Kunishima N, Watanabe S, Suzuki Y, et al. Chest CT Findings in Cases from the Cruise Ship "Diamond Princess" with Coronavirus Disease 2019 (COVID-19). Radiol Cardiothorac Imaging [Internet]. 2020 Apr 1 [cited 2020 Mar 23];2(2):e200110. Available from: http://pubs.rsna.org/doi/10.1148/ryct.2020200110
- 2. Sutton, D., Fuchs, K., D'Alton, M. and Goffman, D., 2020. Universal screening for SARS-CoV-2 in women admitted for delivery. New England Journal of Medicine.
- 3. Day, M., 2020. Covid-19: four fifths of cases are asymptomatic, China figures indicate.
- 4. World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19) [Internet]. 2020 [cited 2020 Mar 14]. Available from: https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
- 5. Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of COVID-19 disease. medRxiv. 2020 Mar 13;2020.03.09.20033357.
- 6. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. www.thelancet.com [Internet]. 2020 [cited 2020 Mar 14];395:497. Available from: https://isaric.tghn.org/protocols/
- 7. Gaythorpe K, Imai N, Cuomo-Dannenburg G, Baguelin M, Bhatia S, Boonyasiri A, et al. Report 8: Symptom progression of COVID-19 [Internet]. 2020 Mar [cited 2020 Mar 18]. Available from: https://doi.org/10.25561/77344
- 8. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet [Internet]. 2020 Mar [cited 2020 Mar 14];0(0). Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673620305663
- 9. Tindale L, Coombe M, Stockdale JE, Garlock E, Lau WYV, Saraswat M, et al. Transmission interval estimates suggest pre-symptomatic spread of COVID-19. medRxiv. 2020 Mar 6;2020.03.03.20029983.
- 10. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA J Am Med Assoc. 2020 Mar 17;323(11):1061–9.
- 11. StatsSA. Mid-year population estimates 2019. Statistical release P0302. 2019.