DEPARTMENT OF WATER AND SANITATION

NO. 700 6 August 2021

NATIONAL WATER ACT, 1998 (ACT NO. 36 OF 1998)

PROPOSED RESERVE DETERMINATION FOR WATER RESOURCES OF THE BREEDE-GOURITZ WATER MANAGEMENT AREA

I, Lindiwe Sisulu, in my capacity as Minister of Human Settlements, Water and Sanitation, having complied with section 13 of the National Water Act, 1998 (Act No. 36 of 1998) ("the Act") and regulation 3 of the Regulations for the Establishment of Water Resource Classification System (No. R. 810 Government Gazette No. 33541, 17 September 2010), and duly authorised in terms of section 16(1) of the Act, hereby publish, for public comment in accordance with section 16(3) of the Act, the proposed Reserve for water resources of the Breede-Gouritz Water Management Area, as set out in the Schedule to this Notice.

Any person who wishes to submit written comments with regards to the proposed Reserve should submit the comments within 60 days from the date of publication of this Notice to:

Director: Reserve Determination Attention: Mr Yakeen Atwaru

Department of Human Settlements, Water and Sanitation

Ndinaye Building 185 Francis Baard Street

Private Bag X313

Pretoria 0001

Email: atwaruy@dws.gov.za

MS LINDIWE SISULU

MINISTER OF HUMAN SETTLEMENTS, WATER AND SANITATION

DATE: 26/05/2021

PROPOSED RESERVE FOR WATER RESOURCES OF THE BREEDE-GOURITZ WATER MANAGEMENT AREA IN TERMS OF SECTION 16(1) AND (2) OF THE NATIONAL WATER ACT, 1998 (ACT NO. 36 OF 1998)

SCHEDULE

1. DESCRIPTION OF WATER RESOURCE

1.1. The Reserve is determined for all or part of every significant water resource within the Breede-Gouritz Water Management Area as set out below:

Water Management Area: Breede-Gouritz

Drainage Regions: G40-G50, H10- H90, J11-J40, K10-K70 Tertiary Drainage

Region

Rivers: Breede Overberg Area: Breede River, Rivieronderend River,

Overberg River, as well as other smaller coastal rivers.

Gouritz Coastal Area: Gouritz River, Buffels River, Touws River, Groot River, Gamka River, Olifants River,

Kammanassie River, and smaller coastal rivers.

- 1.2. The Minister has in terms of section 12 of the National Water Act, 1998 (Act No.36 of 1998) ("the Act"), prescribed a system for classifying water resources by issuing Government Notice No. R. 810, published in Government Gazette No. 33541 dated 17 September 2010. In terms of section 16(1) of the Act, the Minister must, as soon as reasonably practicable after the class of all or part of a water resource has been determined, by Notice in the Gazette, determine the Reserve for all or part of that water resource.
- 1.3. The Minister, in terms of section 16(3) of the Act, proposes, for the purpose of section 16(1) of the Act, the following Reserve determination for the Breede-Gouritz Water Management Area.

2. PROPOSED RESERVE DETERMINATION AS REQUIRED IN TERMS OF SECTION 16(1) AND (2) OF THE NATIONAL WATER ACT, 1998

- 2.1. The proposed Reserve which includes the Ecological Water Requirements (EWRs) and the Basic Human Needs Reserve (BHN) for the Rivers at EWR sites and selected biophysical nodes in the Breede-Gouritz Water Management Area is set out in Section 4. The Gouritz and Breede-Overberg Catchments and EWR sites are indicated in Figure 1 and 2 respectively.
- 2.2. The Water Quality component of the proposed Reserve for the Rivers at the EWR sites in Breede-Gouritz Water Management Area in terms of section 16(1) of the Act is set out in Section 5.
- 2.3. The proposed Groundwater Reserve for Water Quantity and Quality in terms of section 16(1) of the Act for the Breede-Gouritz Water Management Area is set out in **Section 6**.
- 2.4. The proposed Estuarine Reserve in terms of section 16(1) of the Act for the Breede-Gouritz Water Management Area is set out in **Section 7**.
- 2.5. The proposed Wetland Reserve in terms of section 16(1) of the Act for the Breede-Gouritz Water Management Area catchment is set out in Section 8.
- 2.6. The Reserve will apply from the date signed off as determined in terms of section 16(1) of the Act, unless otherwise specified by the Minister.

3. ACRONYMS AND DEFINITIONS

3.1 Acronyms

BHN	Basic Human Needs						
EC	Ecological Category						
EcoSpecs	Ecological Specifications						
EIS	Ecological Importance and Sensitivity						
ER	Ecological Reserve						
EWR	Ecological Water Requirement						
MAR	Mean Annual Runoff						
МСМ	Million Cubic Metres						
PES	Present Ecological Status						
RC	Reference conditions						
REC	Recommended Ecological Category						
TPCs	Thresholds of Potential Concern						
WQSU	Water quality sub-unit						

3.2 Definitions

Baseflow is a sustained low flow in rivers during dry or fair weather conditions, but not necessarily all contributed by groundwater; includes contribution from delayed interflow and groundwater discharge.

Ecological Importance and Sensitivity (EIS): Key indicators in the ecological classification of water resources. Ecological importance relates to the presence, representativeness and diversity of species of biota and habitat. Ecological sensitivity relates to the vulnerability of the habitat and biota to modifications that may occur in flows, water levels and physico-chemical conditions.

Ecological Water Requirements (EWR): The flow patterns (magnitude, timing and duration) and water quality needed to maintain a riverine ecosystem in a particular condition. This term is used to refer to both the quantity and quality components.

Ecological Water Requirement (EWR) Sites: Specific points on the river as determined through the site selection process. An EWR site consists of a length of river which may consist of various cross-sections for both hydraulic and ecological purposes. These sites provide sufficient indicators to assess environmental flows and assess the condition of biophysical components (drivers such as hydrology, geomorphology and physico-chemical) and biological responses (viz. fish, invertebrates and riparian vegetation).

Present Ecological State (PES): A category indicating the current health or integrity of various biological attributes of the water resource, compared to the natural or close to natural reference conditions. The results of the process are provided as Ecological Categories (ECs) ranging from A (near natural) to F (completely modified) for the PES.

Recharge is the addition of water to the zone of saturation, either by downward percolation of precipitation or surface water and/ or the lateral migration of groundwater from adjacent aquifers.

Recommended Ecological Category (REC): An ecological category indicating the ecological management target for a water resource based on its ecological classification that should be attained. Categories range from Category A (unmodified, natural) to Category D (largely modified).

Reserve: is the quantity and quality of the water required to satisfy the basic human needs by securing a basic water supply and to protect the aquatic ecosystem in order to secure ecologically sustainable development and use of the relevant water resource.

River Node (biophysical node): These are modelling point's representative of an upstream reach or area of an aquatic eco-system (rivers, wetlands, estuaries and groundwater) for which a suite of relationships apply.

Sub-quaternary catchments: A finer subdivision of the quaternary catchments (the catchment areas of tributaries of main stem rivers in quaternary catchments).

4. SURFACE WATER QUANTITY COMPONENT FOR <u>RIVERS</u> AT SELECTED EWR SITES AND NODES

The Reserve consists of two parts – the Basic Human Need (BHN) Reserve and the Ecological Reserve (ER). The BHN Reserve provides for the essential needs of individuals served by the water resource in question and includes water for drinking, food preparation and for personal hygiene. The ER relates to the water required to protect the aquatic ecosystems of the water resource. The Reserve refers to both the **quantity** and **quality** of the water in the resource, and will vary depending on the class of the resource (Class I, II and III).

BREEDE-OVERBERG AREA (ECOLOGICAL RESERVE)

Table 4.1: Summary of the data for Nodes and EWR sites. EWR Sites are indicated in bold.

Quaternary Catchment	Node/ EWR site	Water Resource	PES	EIS	REC	nMAR (MCM)	EWR (%
G40C	Piii1	Palmiet	В	High	В	39.9	19.1
G40C	Piv10	Witklippiesskl oof	D	High	D	15.1	21.5
G40C	Piv9	Palmiet	D	High	В	78.8	21.5
G40C	Piv8	Klipdrift	D	High	D	13.6	21.5
G40D	Piv4	Klein-Palmiet	D	High	D	13.7	21.5
G40D	Piv7	Krom/Ribbok	D	Very High	Α	27.5	21.5
G40D	Piii2	Palmiet	С	Very High	B/C	206.6	31.2
G40D	Piv12	Dwars/Louws	С	Very High	С	25.2	100.0
G40D	Piii3	Palmiet	С	Very High	В	250.4	34.5
G40G	Niii5	Bot	С	Very High	Α	31.9	21.3
G40H	Nx6	Onrus	E	High	В	5.1	13.4
G40F	Niv43	Swart	Е	High	В	42.1	13.3
G40K	Niv45	Steenbok	E	Very High	Α	10.8	12.2
G40J	Nii4	Hartebees	D	Very High	В	18.4	12.5
G40K	Nv23	Klein	D	Moderate	С	43.0	19.3
G40M	Nx8	Uilkraal	С	Very High	Α	2.4	19.2
G50B	Ni4	Nuwejaar	D	Moderate	D	12.5	13.0
G50C	Nvii15	Heuninges	D	_	D	17.8	13.1
G50C	Niv44	Heuninges	D	Very High	В	18.8	13.1
G50C	Nii5	Kars	Е	Very High	В	21.6	20.4
G50E	Nv24	Kars	С	Moderate	В	15.4	30.3
G50H	Nii7	DeHoop Vlei	В	High	В	27.1	30.0
G50H	Nii6	Sout	D	-	В	4.2	12.6
H10B	Nvii3	Rooikloof	В	High	В	6.807	37.95
H10B	Niv3	Titus	С	Moderate	С	26.2	22.0
H10C	Niv1	Koekedou	D	Very High	Α	18.8	14.2
H10C	Niv2	Dwars	С	High	В	74.9	22.0
H10D	Nvi4	Breede	D	Moderate	D	175.509	17.51
H10D	Niv4	Witels	Α	Very High	A	84.3	43.3
H10D	Nvi3	Breede	С	High	В	252.8	31.7
H10E	Nvi2	Wit	A	Very High	Α	42.6	46.6
H10F	Niv6	Wabooms	D	High	В	7.4	14.4
H10F	Nviii1/ EWR1	Breede	D/E	High	D	434.90	31.7
H10G	Niv7	Slanghoek	D	High	В	32.6	14.5
H10G	Niii1	Breede	D	High	В	497.6	25.4
H10J	Niv40	Elands	В	Very High	A	58.1	50.8
H10J	Niv41	Krom	В	Very High	A	9.0	50.8
H10J	Nvii2/ EWR2	Molenaars	С	Very High	В	105.6	35.0
H10J	Niv42	Molenaars (Smalblaar)	E	High	В	191.2	17.4

Quaternary Catchment	Node/ EWR site	Water Resource	PES	EIS	REC	nMAR (MCM)	EWR nMAR)	(%
H10K	Niv12	Holsloot	С	High	В	119.5	35.0	_
H10H	Nvii6	Hartbees	D	Very High	A	4.0	14.4	
H10H	Niv9	Hartbees/ de Wetskloof	D	Very High	A	10.2	14.4	
H10L	Nv3	Breede	С	High	В	850.9	31.7	
H20G	Nvii7	Hex	С	Moderate	С	102.8	22.3	
H20H	Niv10	Hex	D	High	В	107.1	22.3	
H40B	Nvii5	Koo	D	High	В	0.9	13.1	
H40C	Niv11	Nuy	E	High	В	29.4	13.2	
H40D	Niv13	Doring	E	High	В	47.4	12.9	
H40F	Nvii8/ EWR3	Breede	C/D	Moderate	C/D	1042.8	45.5	
H40G	Nvii11	Poesnels	D	High	В	16.1	12.8	
H40K	Niv14	Keisers	D	Very High	Α	12.6	12.5	
H40H	Niv15	Vink	D	Very High	Α	15.6	12.4	
H30C	Niv20	Pietersfontein	D	Moderate	С	17.3	12.0	
H30B	Niv18	Kingna	D	High	В	27.1	12.3	
H30D	Nvii9	Keisie	D	High	В	21.5	11.9	
H30E	Nii2	Kogmanskloof	D	Very High	В	52.0	18.9	
H50B	Ni2	Breede	D	High	В	1170.1	17.3	
H60B	Nvii10	Du Toits	В	Very High	Α	43.9	50.8	
H60D	Nv7	Riviersonderend	С	Very High	Α	370.2	30.1	
H60E	Niv28/ EWR6	Baviaans	В	High	В	7.9	70.90	
H60E	Niv29	Sersants	D	High	В	4.6	29.9	
H60F	Niv30	Gobos	С	Very High	Α	12.4	48.1	
H60F	Nv9/EWR5	Riviersonderen d	D	High	D	413.7	24.5	
160G	Niv31	Kwartel	D	High	В	10.7	13.4	
H60H	Niv33	Soetmelksvlei	D	Very High	Α	4.0	29.9	
160H	Niv34	Slang	D	Very High	Α	2.1	29.9	
H60H	Nv10	Riviersonderend	D	Very High	Α	442.9	24.5	
160K	Niv35	Kwassadie	E	Very High	Α	5.9	17.3	
160L	Ni3	Riviersonderend	D	High	В	483.8	24.5	
170A	Niv24	Leeu	E	Very High	Α	5.8	12.6	
170B	Nv2	Breede	С	High	В	1701.4	26.4	
170D	Nii3	Tradouw	В	Very High	Α	19.4	29.9	
170F	Niv25	Buffeljags	E	High	В	119.4	14.1	
170G	Niii4/ EWR4	Breede	С	Very High	B/C	1832.7	40.1	
170J	Niv26	Slang	E	High	В	10.0	14.2	

6

GOURITZ COASTAL AREA (ECOLOGICAL RESERVE)
Table 4.2: Summary of the data for Nodes and EWR sites. EWR sites are indicated in bold.

Quaternary Catchment	Node/ EWR site	Water Resource	PES	EIS	REC	nMAR (MCM)	EWR (%
J11C	giv34	Buffels	В	High	В	13.1	26.5
J11F	gv25	Buffels	В	High	В	24.2	17.8
J11H	J1BUFF- EWR5	Buffels	С	Moderate	С	27.4	17.9
J11K	giv32	Groot	D	High	В	30.5	17.9
J12D	giv28	Touws	D	High	В	16.4	11.3
J12H	giv27	Touws	В	Moderate	С	26.4	26.8
J12K	giv26	Brak	С	High	В	2.9	17.7
J12L	J1DORI- EWR7	Doring	C/D	Low	C/D	2.9	12.0
J12L	J12L Modelled	Huis	D		D	1.56	40.3
J12M	J1TOUW- EWR3	Touws	B/C	High	B/C	33.5	17.8
J13B	gv7	Groot	С	High	В	72.7	18.0
J13C	gii3	Groot	В	High	В	78.1	27.0
J21D	giv3	Gamka	В	High	Α	31.9	27.1
J22F	giv1	Koekemoers	С	Very High	Α	7.4	17.9
J22K	giv2	Leeu	С	Very High	Α	17.1	17.9
J23F	gv17	Gamka	В	High	В	58.1	27.0
J23J	gv27	Gamka	С	High	В	69.6	18.3
J24E	gv14	Dwyka	Α	High	В	4.0	39.1
J25A	J2GAMK- EWR4	Gamka	C/D	High	С	79.8	14.9
J25E	gii2	Gamka	С	High	В	111.8	15.2
J31D	J3OLIF- EWR9	Olifants	С	Moderate	С	11.8	17.8
J32E	giv15	Traka	С	High	С	2.7	17.9
J33B	gv33	Olifants	D	High	В	25.0	11.9
J33E	gv21	Meirings	С	Very High	Α	21.4	19.1
J33F	giv11	Olifants	E	High	В	80.0	12.4
J34C	J3KAMM- EWR10	Kammanassie	C/D	Low	C/D	41.2	15.3
J34F	giv10	Leeu	E	Very High	Α	59.2	12.1
J35E	gv19	Olifants	E	High	В	224.5	12.9
J35F	giv17	Olifants	D	High	В	253.4	12.9
J40B	J4GOUR- EWR6	Gouritz	С	Moderate	С	489.1	14.8
J40E	gv9	Gouritz	С	High	В	571.8	14.8
H80B	giii5	Duiwenhoks	E	Very High	A	62.5	20.1
H80E	H8DUIW- EWR1	Duiwenhoks	D	Low	D	83.2	20.9
H90C	giv27	Korinte	D	High	В	34.1	14.5
H90C	H9GOUK- EWR2	Goukou	C/D	Moderate	C/D	50.9	24.2
H90E	gv41	Goukou	С	High	В	105.0	28.2
K10D	giv25	Brandwag	D	High	В	17.9	9.9
K20A	gvii7	Groot-Brak	B/C	Very High	A	27.0	26.5
K20A	gviii2- EWR GB1-BC	Groot-Brak	B/C	Very High	B/C	15.3	26.5
K20A	gvii3-EWR Var 3	Varing	D	High	C/D	8.4	20.9
K20A	gviii12- EWR Var2	Varing	D	High	C/D	6.0	20.9
K30A	gviii4-EWR	Maalgate	В	Very High	Α	15.3	46.0

Quaternary Catchment	Node/ EWR site	Water Resource	PES	EIS	REC	nMAR (MCM)	EWR (%
K30A	gvii8	Maalgate	В	High	D	30.1	16.4
K30B	gvii9	Malgas	С	Very High	С	17.3	31.6
K30B	gvili6 EWR Gwa1 -D	Gwaing	E	High	D	34.1	16.4
K30C	gviii7 EWR Sw1 - D	Swart	D	High	D	16.1	14.5
K30C	gvii11 EWR Ka1 - D	Kaaimans	В	High	В	18.6	50.2
K30C	gviii8 EWR Si1 -B	Silver	В	Very High	В	14.9	50.2
K30D	gvii12	Touws	В	Very High	Α	16.7	30.3
K30D	gx8	Klein Keurbooms	D	Very High	В	2.5	14.1
K40A	giii10 EWR 2 Diep -B	Diep	В	Very High	В	12.4	30.3
K40B	giii13	Hoekraal	В	Very High	Α	27.9	30.3
K40C	gvii13 EWR 4 Karatara- AB	Karatara	В	Very High	A/B	11.2	40.2
K40C	giii11	Karatara	A/B	Very High	Α	33.8	40,2
K40E	Gou 1	Goukamma	B/C	Very High	B/C	30.4	38.5
K50A	EWR 1	Knysna	В	High	В	26.5	32.1
K50A	Kny 2	Knysna	В	-	В	46.5	32.1
K50B	EWR 2	Gouna	A/B	Very High	A/B	27.6	53.4
K60C	K6KEUR- EWR8	Keurbooms	С	Very High	B/C	46.1	34.9
K60D	giv5	Palmiet	Α	Very High	Α	42.1	48.3
K60F	giv4	Bitou	С	Very High	Α	23.6	22.8
K60G	Noe 1	Noetsie	В	Very High	A/B	4.8	63.4
K60G	gx3	Piesang	D	Very High	Α	7.3	28.5
K60E	gx9	Keurbooms	С	Very High	Α	91.3	34.9
K70A	gx4	Buffels	В	Very High	В	1.8	34.3
K70A	gx5	Sout	В	Very High	В	3.8	34.3
K70B	gvii15	Bloukrans	В	Very High	В	31.2	33.9

Table 4.3: Basic Human Needs for the Breede-Gouritz WMA

Quaternary Catchment	Water Resource	BHN (%NMAR)	Quaternary Catchment	Water Resource	BHN (%NMAR)
G40C	Palmiet	0.008	J11C	Buffels	0.02
G40D	Palmiet	0	J11F	Buffels	0.03
G40G	Bot	0.50	J11H	Buffels	0.03
G40H	Onrus	5.88	J11K	Groot	0.36
G40F	Swart	0.17	J12D	Touws	0.03
G40K	Steenbok	0	J12H	Touws	0.03
G40J	Hartebees	0.08	J12K	Brak	0
G40K	Klein	0	J12L	Doring	0.21
G40M	Uilkraal	0.125	J12M	Touws	0.21
G50B	Nuwejaar	1.12	J13B	Groot	
G50C	Heuninges	0	J13C	Groot	0.01
G50E	Kars	0.84			0
G50G			J21D	Gamka	0
	DeHoop Vlei	0.03	J22F	Koekemoers	0.14
G50H	Sout	0.04	J22K	Leeu	0
H10B	Rooikloof	0	J23F	Gamka	0.10
H10C	Dwars	0.70	J23J	Gamka	0
H10D	Breede	0	J24E	Dwyka	0
H10E	Wit	0	J25A	Gamka	0.003
H10F	Breede	0.04	J25E	Gamka	0.03
H10G	Slanghoek	0	J31D	Olifants	0.02
H10J	Elands	0.02	J32E	Traka	0.03
H10K	Holsloot	0	J33B	Olifants	0.02
H10H	Breede	0	J33E	Meirings	0.56
H10L	Breede	0.005	J34C	Olifants	0.01
H20G	Hex	0.01	J34F	Kammanassie	0.05
H20H	Hex	1.20	J35E	Leeu	0.004
H40B	Koo	2.22	J35F	Olifants	0.01
H40C	Nuy	0.07	J40B	Olifants	0
H40D	Doring	0	J40E	Gouritz	0.003
H40F	Breede	0.002	H80B	Gouritz	0
H40G	Poesnels	0	H80E	Duiwenhoks	0.005
H40K	Keisers	0.32	H90C	Goukou	0.33
H40H	Vink	0.06	H90E	Goukou	0.06
H30C	Pietersfontein	0.07	K10D	Brandwag	0.06
H30B	Kingna	1.33	K20A	Varing	1.50
H30D	Keisie	0.04	K30A	Maalgate	0.39
H30E	Kogmanskloof	0.17	K30B	Malgas	0.18
H50B	Breede	0.004	K30C	Swart	8.99
H60B	Du Toits	0	K30D	Touws	0.54
H60D	Riviersonderend	0.001	K40A	Diep	0.04
H60E	Baviaans	1.14	K40B	Hoekraal	0
H60F	Gobos	0.007	K40C	Karatara	0.54
160G	Kwartel	0	K40E	Goukamma	0.39
H60H	Soetmelksvlei	0	K50A	Knysna	0.002
160K	Kwassadie	0	K50B	Gouna	0.47
160L	Riviersonderend	0	K60C	Keurbooms	0.03
₹70A	Leeu	0	K60D	Palmiet	25.26
170B	Breede	0.01	K60F	Bitou	0.38
170D	Tradouw	0	K60G	Piesang	4.34
170F	Buffeljags	0.02	K60E	Keurbooms	0.02
170G	Breede	0	K70A	Buffels	1.32
170J	Slang	0.40	K70B	Bloukrans	0.03

5.SURFACE WATER QUALITY COMPONENT FOR RIVERS AT EWR SITES

BREEDE-OVERBERG

Table 5.1: PES categories and overall site assessment for Breede River at Node Nviii1 (represented by EWR Site 1)

RIVER	Breede	River	WATER QUA	ALITY MONITO	ORING POINTS		
WQRU		er Breede River to Wit onfluence)	RC	River in Cere (1998 -2002,			
EWR SITE EWR Site 1		ite 1	PES	DWA monitoring station @ Witbr (H1H006Q01) (1998 -2002, n=143)			
Confidence a	ssessment	Medium. EWR site is fu	rther downstrea	am of DWA mo	nitoring station.		
Water Quality	y Constituents		RC Value	PES Value	Category/Comment		
	MgSO ₄		7	21	Category B		
Inorganic	Na ₂ SO ₄		8	4	Category A		
salts (mg/L)	MgCl ₂		5	6	Category A		
1:95 th	CaCl ₂		12	24	Category B		
Percentile	NaCl		6	27	Category A		
values	CaSO ₄		0	0	Category A		
	SRP		-	-	No data		
	TIN		2.8011	0.318	Category B		
Nutrients (mg/L)	TDS		21.8-50.6	< 45	B Category. Increased TDS during Winter months		
	TSS		-	< 5	Acceptable		
	P0 ₄		0.024	0.042	C Category.		
	pH (5 th – 95 th		6.2-7.5	6.9 - 7.8	A Category.		
Dharainal	Temperature		-	-	No data but no concerns		
Physical Variables	Dissolved ox	1.9.	-	-	noted about DO		
Variables	Turbidity (N7	U)	-	2	concentrations		
	Electrical co	nductivity (mS/m)	-	-	No data		
	Chl a: periph	yton	-	-	No data		
	Chl a: phytor	olankton	-	-	No data		
Response variables	Macroinvertebrates		SASS score = >110 and an ASPT score >7	SASS score = 69 and ASPT score = 5.3	D/E Category. Largely modified. Loss of habitat area through infilling.		
	Fish commu	nity score			D/E Category. Introductions of alien fish species, i.e., bass, trout and blue gills.		
Toxics		-	No data but pesticide residues are the concern due to intensive agriculture in Ceres				
OVERALL SIT	E CLASSIFIC	ATION	A/B Category	/			

Table 5.2: PES categories and overall site assessment for Molenaars River at Node Nvii2 (represented by EWR Site 2)

RIVER	Molenaars	River	WATER QUA	LITY MONITO	RING POINTS	
WQRU	2 (Comple	te Molenaars River)	RC	The Molenaar @ Haweq (H1H018Q01	uas Forest Reserve) (1998 -1992, n=93)	
EWR SITE	EWR Site	2	PES	The Molenaars River @ Hawequas Forest Reserv (H1H018Q01) (1998 -2002, n=141)		
Confidence as	ssessment	High. Monitoring point and hence PES data	t is very close to to was used for Refe	he EWR site. H erence conditio	istoric data shows no trends ns.	
Water Quality	Constituents		RC Value	PES Value	Category/Comment	
	MgSO ₄		6	6	Category A	
Inorganic	Na ₂ SO ₄		9	9	Category A	
salts (mg/L)	MgCl ₂		4	4	Category A	
1:95 th %	CaCl ₂		6	6	Category A	
values	NaCl		9	9	Category A	
	CaSO ₄		0	0	Category A	
	SRP			-		
	TIN (1:50th %	6)	0.151	0.151	Category A	
Nutrients	TDS		22	22	Category A	
(mg/L)	TSS		< 5	< 5	Category A	
	P0 ₄ (1:50 th %)		0.025	0.025	Category C	
	NH ₃ -N		<0.015.	<0.015.	Within range	
	pH (5 th – 95 th %)		5.5 – 7.3	5.5 – 7.3	A Category. Typical acidic Western Cape river	
	Temperature)			TTOOLOTTI Gapo TITO	
Physical Variables	Dissolved oxygen		80 - 120% saturation.	80 - 120% saturation.	Within range, Category	
	Turbidity (N7	⁻ U)	-	0		
	Electrical co	nductivity (mS/m)	-	-	No data	
	Chl a: periph	yton	-	-	No data	
	Chl a: phytop	olankton	_	-	No data	
Response variables	Macroinvertebrates		SASS score ≥140 and an ASPT score >8	SASS score = 175 and ASPT score = 7.9	A/B Category, Catchment is relatively pristine	
	Fish commu	nity score			E Category. No indigenous fish were recorded during the study	
Toxics	oxics		-	-	No toxic substance concerns	
OVERALL SITE CLASSIFICATION			A Category		N. Committee of the com	

Table 5.3: PES categories and overall site assessment for Breede River at Node Nvii8 (represented by EWR Site 3)

RIVER	Breede	River	WATER QUA	LITY MONITO	RING POINTS	
WQRU	Molena	liddle Breede from ars confluence to nskloof confluence)	RC	None. No WQ monitoring station couprovide reference data for this Resource Unit.		
EWR SITE	EWR S	ite 3	PES	Breede Riv (H4H017Q01)	ver at Le Chasseur (1995 -1999, n=214)	
Confidence a	assessment	Moderate				
Water Quality	y Constituents		RC Value	PES Value	Category/Comment	
	MgSO ₄			39	Category D	
	Na ₂ SO ₄		-	5	Category A	
Inorganic salts (mg/L)	MgCl ₂		_	12	Category A	
saits (mg/L)	CaCl ₂		_	32	Category B	
(1:95 th %)	NaCl			95	Category B	
			-		Category A	
	CaSO ₄		-	0	Category A	
	SRP		-			
	TIN (1:50 th %	6)	-	0.242	Category A	
Nutrients (mg/L)	TDS		-	< 45	B Category. High TDS loads. Irrigation return flows in tributaries and main stem between Brandvlei Dam and EWR Site 3.	
	TSS		-	< 5	High TSS loads. Releases from Brandvlei to alleviate high TDS.	
	P04 (1:50 th %		-	0.032	C Category	
	pH (5 th – 95 th		-	6.9 – 7.8	A Category	
	Temperature		-	22.4	Summer temperature	
Physical Variables	Dissolved ox		-	-	No observed data No data. Low sediment	
variables	Turbidity (N7	TU)	-	-	production area	
	Electrical co	nductivity (mS/m)	-	-	No data	
	Chl a: periph	yton	-	-	No data	
	Chl a: phytop	olankton	-	-	No data	
Response variables	Macroinverte	ebrates	SASS score ≥110 and an ASPT score >7	SASS score = 91 and ASPT score = 7	A Category. Suggest there is no significant impact to community structure.	
	Fish commu	nity score	-		D Category. Only 2 of the 7 indigenous freshwater species expected to occur there were sampled.	
Toxics		-	-	No data but Pesticides are a concern as a result of intensive agriculture		
OVERALL SITE CLASSIFICATION			D Category. Mainly due to increased summer low flows and increased sediment load.			

Table 5.4: PES categories and overall site assessment for Breede River at Node Niii4 (represented by EWR Site 4)

RIVER	Breede	River	WATER QUA	ALITY MONITO	RING POINTS		
WQRU		Breede River from jags River to Estuary)	RC	None. No We provide refere Unit.	Q monitoring station could ence data for this Resource		
EWR SITE	EWR S		PES	Lower Breede River @ Swellenda (H7H006Q01) (1995 -1999, n=214)			
Confidence assessment flow in the river duri		Moderate (There were r flow in the river during fi to be taken; Monitoring	eld visits was o	drological data f	or this reach of the river and allow for discharge readings		
Water Quality	y Constituents		RC Value	PES Value	Category/Comment		
	MgSO ₄		-	83	Category E/F		
Inoraania	Na ₂ SO ₄		-	3	Category A		
Inorganic salts (mg/L)	MgCl ₂		-	49	Category D		
	CaCl ₂		-	62	Category C		
(1:95 th %)	NaCl		-	318	Category D		
	CaSO ₄		-	0	Category A		
	SRP		-	-	No data		
	TIN (1:50th 9	6)	_	0.23	Category A		
Nutrients	TDS		-	-	C Category. High TDS loads due to Irrigation return flows in tributaries and main		
(mg/L)	TSS		-	-	No data		
	P0 ₄ (1:50 th % NH ₃ -N	0)	-	0.024 0.3 (Median)	C Category No historic data		
	NO ₂ NO ₃ -N		-	<1	Recommended winter concentrations but summer can be as low as < 0.3 mg/l		
	pH (5 th – 95 ^t	^h %)	-	6.9 - 8.1	Category A/B. No significant change.		
Physical	Temperature		-	-	No observed data. Some		
Variables	Dissolved ox	18,047	-	-	concerns about short- term fluctuation in DC		
	Turbidity (N	U)	-	-	levels.		
	Electrical co	nductivity (mS/m)	-	-	No data		
	Chl a: periph	yton	-	-	No data		
	Chl a: phytoj	olankton	-	-	No data		
Response variables	Macroinverte	ebrates	SASS score ≥110 and an ASPT score >7	SASS score = 87 and ASPT score = 6.9	B Category. Moderately impacted.		
	Fish commu	nity score	10 indigenous fish species		C Category. Presence of carp and bass.		
Toxics			-		No data but pesticide residues are the concerr due to intensive agriculture.		
OVERALL SIT	E CLASSIFIC	ATION	Buffelsjags R		n high quality inflow from acceptable WQ in the lower arry		

Table 5.5: PES categories and overall site assessment for Riviersonderend at Node Nv7 (represented by EWR site 5)

RIVER	Riviersonde	rend River		WATER Q	UALITY MONITORING	POINTS	
WQRU	7 (Middle River from Dam to Bok	Theewater		RC	Reserve (H6H008Q01) (1990		
EWR SITE	EWR Site 5		PES		Riviersonderend at T (H6H012Q01) (1998 Riviersonderend at R (H6H009Q01) (1995	-2002, n=39) eenen	
Confidence as	ssessment	High					
Water Quality	Constituents		RC Va	alue	PES Value	Category/Comment	
	MgSO ₄		7		12	Category A	
Inorganic	Na ₂ SO ₄		7		13	Category A	
salts (mg/L)	MgCl ₂		4		14	Category A	
1:95 th %	CaCl ₂		5		14	Category A	
value	NaCl		11		99	Category B	
	CaSO ₄		0		0	Category A	
	SRP		_		_	No data	
Nutrients (mg/L)	TIN (1:50 th %)		0.068		0.154	Category A.	
	TDS		13.6-32		Summer: <100 and winter: < 150	B Category. High TDS loads due to agricultural return flows in winter	
	TSS		< 5			No data	
	P0 ₄ (1:50 th %	6)	<0.01	65	0.013	Category B. Slightly higher.	
	NO₂NO₃-N		0.02		<0.25	Recommended winter concentrations but summer can be as low as < 0.2 mg/l	
	pH (5 th – 95 th		6.5 –		6.4 - 7.4	A/B Category.	
	Temperature	(°C)	+-4 °C		-		
Physical	Dissolved ox	ygen	80 - 120% saturation		-	No data	
Variables	Turbidity (NT	U)	-		4		
		conductivity	-		-	No data	
	Chl a: periph	yton	-		-	No data	
	Chl a: phytor	olankton	-		-	No data	
Response variables	Macroinverte	brates	SASS ≥110 ASPT	score and an score >7	SASS score = 95 and ASPT score = 6.8	C/D Category. Most of the reach has good water quality but poor habitat quality.	
	Fish community score		Six indigenous fish species			E Category. Dominated by large and small mouth bass. Reduction of indigenous fish species.	
Toxics		-		-	No data but pesticide residues are the concern due to intensive agriculture upstream of EWR site		
OVERALL SITI	OVERALL SITE CLASSIFICATION		A/B Category (The presence of Theewaterskloof Dam has slig reduced the water quality in the downstream river)				

Table 5.6: PES categories and overall site assessment for Baviaans River at Node Niv28 (represented by EWR Site 6)

RIVER	Baviaa	ns River	WATER QUALITY MO	NITORING POI	NTS
WQRU	9 (Cor River)	nplete Baviaans	RC	Station (H6H005Q01)	er at Genadendal Mission (1972 -1994, n=346)
EWR Site 6		PES	Baviaans River at Genadendal Missio Station (H6H005Q01) (1998 -2002, n=42)		
Confidence as	sessment	High. Good date trends and hen	ta record to assess both ce PES data was used fo	reference and F or Reference cor	PES. Historic data shows no nditions
Water Quality	Constituents		RC Value	PES Value	Category/Comment
	MgSO ₄		9	9	Category A
Inorganic	Na ₂ SO ₄		9	9	Category A
salts (mg/L)	MgCl ₂		4	4	Category A
1:95 th %	CaCl ₂		10	10	Category A
value	NaCl		25	25	Category A
	CaSO ₄		0	0	Category A
	SRP		-	-	No data
Nutrients	TIN (1:50th 9	% value)	0.04	0.040	Category A
(mg/L)	TDS		41	41	Category A
. 5 /	TSS		-	-	No data
	P04 (1:50 th 9	6 value)	0.022	0.022	Category A
	pH (5 th – 95 ^t	^h %)	4.7 – 7.1	4.7 - 7.0	A Category. Regarded as natural for low pH Western Cape Rivers
Physical	Temperature	e (°C)	-	-	
Variables	Dissolved ox	kygen	-	-	No data but no DO
	Turbidity (N	ΓU)	-	-	concerns
	Electrical (mS/m)	conductivity	-	-	No data
	Chl a: periph	nyton	-	-	No data
	Chl a: phyto	plankton	-	-	No data
Response variables	Macroinverte	ebrates	SASS score ≥140 and an ASPT score >8	SASS score = 109 and ASPT score = 8.38	A Category. Reduced habitat.
	Fish commu	nity score	Three indigenous fish species		A/B Category. All species expected to occur here historically, were recorded
Toxics		-	-	No data but no toxic substance concerns noted	
OVERALL SITI	E CLASSIFIC	ATION	A Category	1	_ oabstance concerns noted
STERREE OFFE GEROOM TORTION			A Category		

GOURITZ

Table 5.7: PES categories and overall site assessment for Duiwenhoks River at H8DUIW-EWR1

RIVER	Duiwenhoks River		WATER QUALI	TY MONITORING POINTS
WQRU			RC	DWS gauging weir H8H001Q01 (1967 – 1979; number of samples (n) = 66 - 71, Electrical Conductivity: n = 110).
EWR SITE	H8DUIV	V-EWR1	PES	DWS gauging weir H8H001Q01 (2007 – 2013; n = 69, Fluorine (F) = 48).
Confidence a	assessment	Confidence: 3.	5	
Water Quality	y Constituents		PES Value	Category/Comment
	SO ₄		N/A	-
	Na		382.2	Exceeds the ≤ 70 mg/L (TWQR) for Agricultural Use: Irrigation.
Inorgania	Mg		67.4	No guideline.
Inorganic salts (mg/L)	Са		55.0	No guideline.
Cl			805.4	Exceeds the ≤ 100 mg/L (TWQR) for Agricultural Use: Irrigation.
	К		9.25	No guideline.
Nutrients	SRP		0.014	Α
(mg/L)	TIN		0.118	Α
	pH (5 th – 95 ^{tr}		6.6 and 8.1	В
	Temperature (°C)		N/A	A/B. Impacts expected at low flows.
Physical Variables	Dissolved oxygen Turbidity (NTU)		N/A N/A	B. Impacts expected at low flows. B. Changes in turbidity appear to be largely related to natural with minor man-made modifications, e.g. gravel mining upstream
	Electrical conductivity (mS/m)		272	80 mS/m
	Chl a: phytop	lankton	N/A	N/A
Response variables	Macroinverte	Macroinvertebrates		D
	Diatoms		11.1	C/D (n = 1, Jan 2014)
	Fish commur	nity score	51.6%	D (all estuarine spp. that moved into the freshwater zone and aliens).
Toxics	Ammonia (as	N)	0.003	A
TONICS	Fluoride (as I	=)	0.33	A
OVERALL SIT	E CLASSIFICA	ATION	C Cate	gory

Table 5.8: Water quality EcoSpecs and TPCs (C category) for Duiwenhoks River at H8DUIW-EWR1

Metrics	EcoSpecs	TPCs	
Inorganic salt ions	5		
Sulphate as SO ₄	N/A	N/A	
Sodium as Na	The 95 th percentile of the data must be ≤ 380 mg/L.	The 95th percentile of the data must be 300 - 380 mg/L.	
Magnesium as Mg	The 95 th percentile of the data must be ≤ 67 mg/L.	The 95 th percentile of the data must be 53.5 - 67 mg/L.	
Calcium as Ca	The 95 th percentile of the data must be ≤ 55 mg/L.	The 95 th percentile of the data must be 44 - 55 mg/L.	
Chloride as Cl	The 95 th percentile of the data must be ≤ 800 mg/L.	The 95 th percentile of the data must be 640 - 800 mg/L.	
Potassium as K	The 95 th percentile of the data must be ≤ 9 mg/L.	The 95 th percentile of the data must be 7 - 9 mg/L.	
Physical Variables	3		
Electrical conductivity (mS/m)	The 95 th percentile of the data must be ≤ 270 mS/m.	The 95 th percentile of the data must be 210 - 270 mS/m.	
pH	The 5 th percentile of the data must be 6.5. – 8.0, and the 95 th percentile 8.0 - 8.8.	The 5 th percentile of the data is \leq 6.3 and the 95 th percentile is \geq 8.6.	
Temperature ^(a)	Natural temperature range.	Initiate baseline monitoring for this variable.	
Dissolved oxygen ^(a) (DO)	The 5 th percentile of the data must be ≥ 7.0 mg/L.	The 5 th percentile of the data must be 7.2 - 7.0 mg/L. Initiate baseline monitoring for this variable.	
Turbidity ^(a)	Changes in turbidity are related to minor man-made modifications (e.g. gravel mining upstream). Some silting of habitats is expected.	Initiate baseline monitoring for this variable.	
Nutrients			
TIN	The 50 th percentile of the data must be ≤ 0.25 mg/L.	The 50 th percentile of the data must be 0.2 - 0.25 mg/L.	
PO ₄ -P	The 50 th percentile of the data must be ≤ 0.015 mg/L.	The 50 th percentile of the data must be 0.012 - 0.015 mg/L.	
Response variable	es		
Chl-a phytoplankton	The 50 th percentile of the data must be < 15 µg/L.	The 50 th percentile of the data must be 12 - 15 µg/L.	
Chl-a periphyton	The 50 th percentile of the data must be ≤ 12 mg/m².	The 50 th percentile of the data must be 10 - 12 mg/m ² .	
Toxics			
Fluoride	The 50 th percentile of the data must be ≤ 1.5 mg/L.	The 50^{th} percentile of the data must be 1.2 - 1.5 mg/L.	
Ammonia (NH3-N)	The 50 th percentile of the data must be ≤ 0.015 mg/L.	The 50 th percentile of the data must be 0.012 - 0.015 mg/L.	
Other toxics	The 95 th percentile of the data must be within the Target Water Quality Range (TWQR) as stated in DWAF (1996) or the A Category boundary as stated in DWAF (2008).	An impact is expected if the 95 th percentile o the data exceeds the TWQR as stated in DWAF (1996) or the upper limit of the A Category boundary as stated in DWAF (2008).	

Table 5.9: PES categories and overall site assessment for Goukou River at H9GOUK-EWR2

RIVER	Goukou River		WATER QUAL	ITY MONIT	ORING POINTS	
WQRU				RC	the A Ca (2008), a	ce Condition (RC) was represented by tegory benchmark tables in DWAF as no other data were available to natural state.
EWR SITE H9GOU		IK-EWR2	PES		uging weir H9H005Q01 (2007 – 2014; n , F = 52).	
Confidence a	ssess	ment	Confidence: 3		-1	
Water Quality	/ Cons	stituents		PES Value		Category/Comment
	SO.	4		N/A		N/A
	Na			650.4		Exceeds the ≤ 70 mg/L (TWQR) for Agricultural Use: Irrigation.
Inorganic	Mg			79.0		No guideline.
salts (mg/L)	Са		57.1		No guideline.	
	CI	CI		1081.3		Exceeds the ≤ 100 mg/L (TWQR) for Agricultural Use: Irrigation.
	K			20.4		No guideline.
Nutrients	SRI	SRP		0.085		D
(mg/L)	TIN			0.055		A
		(5 th – 95 th	,	6.6 and 8.35		В
Physical		nperature		N/A		A/B. Impacts expected at low flows.
Variables		solved ox bidity (NT		N/A N/A		B. Impacts expected at low flows. A/B. Changes in turbidity appear to be largely related to natural.
	Elec (mS	ctrical 5/m)	conductivity	408.4		E/F
	Chl	a: phytop	olankton	N/A		N/A
Response variables	Mad	Macroinvertebrates		51.2% SASS score =113 ASPT score = 6.6		D
	Diat	Diatoms		14.4 and 11.0		C/D (n = 2; Jan and July 2014)
	Fish	commur	nity score	47.4%		D
	Amı	monia (as	s N)	0.01		Α
Toxics	Fluc	Fluoride (as F)		0.59		А
OVERALL SIT	E CI	ASSIFICA	ATION	0/0.0	ategory	

Table 5.10: Water quality EcoSpecs and TPCs (Category: C/D) for Goukou River at GOUK-EWR2

Metrics	EcoSpecs	TPCs
Inorganic salt ions	.	
Sulphate as SO ₄	N/A	N/A
Sodium as Na	The 95 th percentile of the data is between ≤ 650 mg/L.	The 95 th percentile of the data is between 520 - 650 mg/L.
Magnesium as Mg	The 95 th percentile of the data is between ≤ 80 mg/L.	The 95 th percentile of the data is between 64 - 80 mg/L.
Calcium as Ca	The 95 th percentile of the data is between ≤ 55 mg/L.	The 95 th percentile of the data is between 44 - 55 mg/L.
Chloride as Cl	The 95 th percentile of the data is between ≤ 1 000 mg/L.	The 95th percentile of the data is between 800 - 1 000 mg/L.
Potassium as K	The 95 th percentile of the data is between ≤ 20 mg/L.	The 95 th percentile of the data is between 16 - 20 mg/L.
Physical variables		
Electrical conductivity (mS/m)	The 95 th percentile of the data is between ≤ 400 mS/m.	The 95th percentile of the data is between 320 - 400 mS/m.
рН	The 5 th percentile of the data must be 6.5. – 8.0, and the 95 th percentile 8.0 - 8.8.	The 5^{th} percentile of the data is ≤ 6.3 and the 95^{th} percentile is ≥ 8.6 .
Temperature ^(a)	Natural temperature range.	Initiate baseline monitoring for this variable.
Dissolved oxygen ^(a)	The 5 th percentile of the data is between ≥ 7.0 mg/L.	The 5 th percentile of the data is between 7.2 - 7.0 mg/L. Initiate baseline monitoring for this variable.
Turbidity ^(a)	Changes in turbidity are related to minor man-made modifications. Some silting of habitats is expected.	Initiate baseline monitoring for this variable.
Nutrients		
TIN-N	The 50 th percentile of the data is between ≤ 0.25 mg/L.	The 50 th percentile of the data is between 0.2 - 0.25 mg/L.
PO ₄ -P	The 50 th percentile of the data is between ≤ 0.125 mg/L.	The 50th percentile of the data is between 0.1 - 0.125 mg/L.
Response variable	S ^(a)	
Chl-a phytoplankton	The 50 th percentile of the data is between < 15 µg/L.	The 50^{th} percentile of the data is between 12 - 15 μ g/L.
Chl-a periphyton	The 50 th percentile of the data is between ≤ 21 mg/m².	The 50 th percentile of the data is between 17 - 21 mg/m ² .
Toxics		
Fluoride	The 50 th percentile of the data is between ≤ 1.5 mg/L.	The 50 th percentile of the data is between 1.2 - 1.5 mg/L.
Ammonia (NH3-N)	The 50 th percentile of the data is between ≤ 0.015 mg/L.	The 50th percentile of the data is between 0.012 - 0.015 mg/L.
Other toxics	The 95 th percentile of the data is between within the TWQR as stated in DWAF (1996) or the A Category boundary as stated in DWAF (2008).	An impact is expected if the 95 th percentile of the data exceeds the TWQR as stated in DWAF (1996) or the upper limit of the A Category boundary as stated in DWAF (2008).

Table 5.11: PES categories and overall site assessment for Touws River at J1TOUW-EWR3

RIVER	Touws River		WATER QU	JALITY MONIT	ORING POINTS
WQRU			RC	N/A	
EWR SITE J1TOU		OUW-EWR3	PES	(WMS) the EW	Q01 (Water Management System code 102147), located upstream of R site. (Data record: 2000 – 2014; of samples (n) = ± 128).
Confidence assessment 2.5		1	M		
Water Quality	Constitue	nts	PES Value		Category/Comment
	SO ₄		N/A		
	Na		2 016.9		All guidelines exceeded due to high
Inorganic	Mg		370.1		saline geology of the area. It is assumed that some increase in salinity
salts (mg/L)	Ca		258.2		may be expected due to irrigation
	CI		3 494.6		return flows. No large urban centers are situated in this area.
	K		37.06		
Nutrients	SRP		0.033		D
(mg/L)	TIN		0.079		A
	pH (5 th –	95 th %)	7.6 and 8.6		В
	Temperat	ture (°C)	N/A		B. Impacts expected at low flows.
Physical Variables	Dissolved oxygen		N/A		B. Impacts expected at low flows, although on-site data still shows high levels. B. Changes in turbidity appear to be largely related to natural with minor
	Turbidity	(NTU)	N/A		man-made modifications.
	Electrical (mS/m)	conductivity	1181.8		
	Chl a: phy	/toplankton	N/A		N/A
Response variables	Macroinve	ertebrates	74.0%		С
	Diatoms		8.6 (average	∋)	D
	Fish com	munity score	56.8%		D
T2	Ammonia	(as N)	0.034		Α
Toxics	Fluoride (as F)	0.43		Α
OVERALL SIT	E CLASSIF	ICATION	P//	C Category	

Note:

RC: Information available to the water quality specialist on water quality conditions and land-use were used as no RC data were available and the A Category benchmarks tables in DWAF (2008) were considered unsuitable due to the high geology-based salinities in the area.

Table 5.12: Water quality EcoSpecs and TPCs (Category B/C) for Touws River at J1TOUW-EWR3

		Ty B/C) for Touws River at J1 TOUW-EWR
Metrics	EcoSpecs	TPCs
Inorganic salt ions	5	
Sulphate as SO ₄	N/A	
Sodium as Na	≤ 2000 mg/L.	The 95 th percentile of the data is between 1600 - 2000 mg/L.
Magnesium as Mg	≤ 370 mg/L.	The 95^{th} percentile of the data is between 300 - 370 mg/L.
Calcium as Ca	≤ 260 mg/L.	The 95 th percentile of the data is between 200 - 260 mg/L.
Chloride as Cl	The 95 th percentile of the data is between ≤ 3500 mg/L.	- 3500 mg/L.
Potassium as K	The 95 th percentile of the data is between ≤ 37 mg/L.	The 95 th percentile of the data is between 30 - 37 mg/L.
Physical variables		
Electrical conductivity (mS/m)	The 95 th percentile of the data is between ≤ 1100 mS/m.	The 95 th percentile of the data is between 880 - 1100 mS/m.
рН	The 5 th percentile of the data is between 6.5 – 8.0, and the 95 th percentile 8.0 - 8.8.	The 5 th percentile of the data is \leq 6.3 and the 95 th percentile is \geq 8.6.
Temperature	Natural temperature range.	Initiate baseline monitoring for this variable.
Dissolved oxygen	The 5 th percentile of the data is between ≥ 7.0 mg/L.	The 5 th percentile of the data is between 7.2 - 7.0 mg/L. Initiate baseline monitoring for this variable.
Turbidity	Changes in turbidity are related to minor man-made modifications. Some silting of habitats is expected.	Initiate baseline monitoring for this variable.
Nutrients		
TIN-N	The 50 th percentile of the data is between ≤ 0.25 mg/L.	The 50 th percentile of the data is between 0.2 - 0.25 mg/L.
PO ₄ -P	The 50 th percentile of the data is between ≤ 0.075 mg/L.	The 50^{th} percentile of the data is between 0.06 - 0.075 mg/L.
Response variable	s	
Chl-a phytoplankton	< 15 μg/L.	The 50 th percentile of the data is between 12 - 15 µg/L.
Chl-a periphyton	The 50 th percentile of the data is between ≤ 21 mg/m².	The 50 th percentile of the data is between 17 - 21 mg/m ² .
Toxics		
Fluoride	The 50 th percentile of the data is between ≤ 1.5 mg/L.	The 50 th percentile of the data is between 1.2 - 1.5 mg/L.
Ammonia (NH ₃ -N)	The 50 th percentile of the data is between ≤ 0.015 mg/L.	The 50 th percentile of the data is between 0.012 - 0.015 mg/L.
Other toxics	The 95 th percentile of the data is between within the TWQR as stated in DWAF (1996) or the A Category boundary as stated in DWAF (2008).	An impact is expected if the 95 th percentile of the data exceeds the TWQR as stated in DWAF (1996) or the upper limit of the A Category boundary as stated in DWAF (2008).

⁽a) N/A: No data were available for this assessment.

Table 5.13: PES categories and overall site assessment for Gamka River at J2GAMK-EWR4

RIVER	Ga	amka	River	WATER QUA	LITY MONITORING POINTS	
WQRU		RC	A category benchmark tables from DWAF (2008) were used.			
EWR SITE J2G		J2GAMK-EWR4		PES	Data were sourced from DWS gauging weir J2H016Q01 (WMS code 102173), located downstream Gamkapoort Dam and upstream of the EWR site. (Data record: 2007 – 2014; n = 127).	
Confidence a	ssessmei	nt	3.0			
Water Quality	/ Constitu	ents		PES Value	Category/Comment	
	SO ₄			N/A		
	Na			114.0	Exceeds the 70mg/I (TWQR) for Agricultural Use: Irrigation	
Inorganic salts (mg/L)	Mg			20.5	No guideline	
saits (Hig/L)	Ca			57.6	No guideline	
	CI			155.5	Exceeds the 100mg/l (TWQR) for Agricultural Use: Irrigation	
	K			7.9	No guideline	
Nutrients	SRP			0.07	D	
(mg/L)	TIN			0.523	В	
	pH (5 th -			7.4 and 8.6		
	Temper			N/A N/A	Impact expected as the site is downstream of the	
Physical Variables	Dissolve Turbidity			N/A N/A	Gamkapoort Dam (constructed in 1970)	
	Electrical conductivity (mS/m)		97.5	C. Natural salinity expected to be higher than the 30Ms/m A category benchmark value in DWAF (2008)		
	Chl a: pl	hytop	lankton	N/A	N/A	
Response variables	Macroin	verte	brates	61.4%	C/D	
	Diatoms	3		9.9	D	
	Fish cor	nmur	nity score	60.4%	C/D	
Tardas	Ammoni	ia (as	N)	0.015	A	
Toxics	Fluoride	(as l	=)	0.53	A	
OVERALL SIT	E CLASS	IFIC/	ATION	B/C C	Category	

Table 5.14: Water quality EcoSpecs and TPCs (PES: B/C) for Gamka River at J2GAMK-EWR4

Metrics	EcoSpecs: PES	TPCs: PES	
Inorganic salt ions			
Sulphate as SO ₄	N/A	N/A	
Sodium as Na	The 95 th percentile of the data is between ≤ 114 mg/L.	The 95 th percentile of the data is between 90 - 114 mg/L.	
Magnesium as Mg	The 95 th percentile of the data is between ≤ 20 mg/L.	The 95 th percentile of the data is between 16 - 20 mg/L.	
Calcium as Ca	The 95 th percentile of the data is between ≤ 58 mg/L.	The 95 th percentile of the data is between 47 - 58 mg/L.	
Chloride as Cl	The 95 th percentile of the data is between ≤ 155 mg/L.	The 95 th percentile of the data is between 124 - 155 mg/L.	
Potassium as K	The 95 th percentile of the data is between ≤ 8 mg/L.	The 95^{th} percentile of the data is between 6.5 - 8.0 mg/L.	
Physical variables			
Electrical conductivity (mS/m)	The 95 th percentile of the data is between ≤ 100 mS/m.	The 95 th percentile of the data is between 80 - 100 mS/m.	
pН	The 5 th percentile of the data is between 5.9 - 6.5, and the 95 th percentile 8.0 - 8.8.	The 5^{th} percentile of the data is ≤ 5.7 and the 95^{th} percentile is ≥ 8.6 .	
Temperature ^(a)	Moderate change to temperature due to upstream Gamkapoort Dam.	Initiate baseline monitoring for this variable.	
The 5 th percentile of the data is between ≥ 7.0 mg/L. Although some impacts are expected due to the upstream Gamkapoort Dam, the size of the river will mitigate the effects.		The 5 th percentile of the data is between 7.2 - 7.0 mg/L. Initiate baseline monitoring for this variable.	
Turbidity ^(a)	Changes in turbidity are related to minor man-made modifications. Some silting of habitats is expected.	Initiate baseline monitoring for this variable.	
Nutrients			
TIN-N	The 50 th percentile of the data is between ≤ 0.7 mg/L.	The 50 th percentile of the data is between 0.56 0.7 mg/L.	
PO ₄ -P	The 50 th percentile of the data is between ≤ 0.125 mg/L.	The 50 th percentile of the data is between 0.1 - 0.125 mg/L.	
Response variable	S		
Chl-a phytoplankton	The 50 th percentile of the data is between < 15 µg/L.	The 50^{th} percentile of the data is between 12 - 15 μ g/L.	
Chl-a periphyton	The 50 th percentile of the data is between ≤ 21 mg/m ² .	The 50 th percentile of the data is between 17 - 21 mg/m ² .	
Toxics			
Fluoride	The 50 th percentile of the data is between ≤ 1.5 mg/L.	The 50 th percentile of the data is between 1.2 - 1.5 mg/L.	
Ammonia (NH ₃ -N)	The 50 th percentile of the data is between ≤ 0.015 mg/L.	The 50 th percentile of the data is between 0.012 - 0.015 mg/L.	
Other toxics	The 95 th percentile of the data is between within the TWQR as stated in DWAF (1996) or the A Category boundary as stated in DWAF (2008).	An impact is expected if the 95 th percentile of the data exceeds the TWQR as stated in DWAF (1996) or the upper limit of the A Category boundary as stated in DWAF (2008).	

Table 5.15: PES categories and overall site assessment for Buffels River at J1BUFF-EWR5

RIVER	Buffels		WATER QUAI	ITY MONIT	ORING POINTS
WQRU		RC	Data were sourced from DWS gauging J1H028Q01 (WMS code 102152), It downstream Floriskraal Dam and upstream EWR site. Note that the monitoring point is the same Level II EcoRegion as the EWI however, this was the only data point betwe dam and the site. (Data record: 1972 – 19754, Conductivity: n = 33).		
EWR SITE	J1BUF	-EWR5	PES	J1H028	ere sourced from DWS gauging weir Q01 (WMS code 102152) (Data 2010 – 2014; n = 44).
Confidence a	ssessment	Confidence: 2	2.5		
Water Quality	Constituents		PES Value		Category/Comment
	SO ₄		61.42		No guideline
	Na		81.44		Exceeds the ≤ 70 mg/L (TWQR) for Agricultural Use: Irrigation.
Inorganic salts (mg/L)	Mg		25.2		No guideline.
saits (mg/L)	Ca		48.68		No guideline.
	CI			124.0	Exceeds the ≤ 100 mg/L (TWQR) for Agricultural Use: Irrigation.
	K		6.11		No guideline.
Nutrients (mg/L)	SRP		0.015		B. Levels have decreased since the 1970s.
(119/2)	TIN OF	h 0()	0.26 7.5 and 8.5		A/B. No change from the 1970s.
	pH (5 th – 95 th	,	7.5 and 6.5		B. No change from the 1970s.
Physical	Dissolved ox		N/A		Impact expected as the site is downstream the large Floriskraal Dam
Variables	Turbidity (N7	ΓU)	N/A		(constructed in 1965).
	Electrical (mS/m)	conductivity	78.1		No change from the 1970s.
	Chl a: phytoj	olankton	N/A		N/A
Response variables	Macroinverte	Macroinvertebrates			С
	Diatoms		11.2 (average)	C/D
	Fish commu	nity score	83.7%		В
Todas	Ammonia (a:	s N)	0.017		A
Toxics	Fluoride (as	F)	0.66		A. No change from the 1970s.
OVERALL SIT	E CLASSIFIC	ATION	B/C	Category	

Table 5.16: Water quality EcoSpecs and TPCs (Category B/C) for Buffels River at J1BUFF-EWR5

Metrics	EcoSpecs: PES	TPCs: PES
Inorganic salt ions	5	*
Sulphate as SO ₄	The 95 th percentile of the data is between ≤ 60 mg/L.	The 95 th percentile of the data is between 48 - 60 mg/L.
Sodium as Na	The 95 th percentile of the data is between ≤ 80 mg/L.	The 95 th percentile of the data is between 64 - 80 mg/L.
Magnesium as Mg	The 95 th percentile of the data is between ≤ 25 mg/L.	The 95 th percentile of the data is between 20 - 25 mg/L.
Calcium as Ca	The 95 th percentile of the data is between ≤ 50 mg/L.	The 95 th percentile of the data is between 40 - 50 mg/L.
Chloride as Cl	The 95 th percentile of the data is between ≤ 125 mg/L.	The 95 th percentile of the data is between 100 - 125 mg/L.
Potassium as K	The 95 th percentile of the data is between ≤ 6.0 mg/L.	The 95^{th} percentile of the data is between 4.8 - 6.0 mg/L.
Physical variables		
Electrical conductivity (mS/m)	The 95 th percentile of the data is between ≤ 85 mS/m.	The 95th percentile of the data is between 68 - 85 mS/m.
рН	The 5 th percentile of the data is between 5.9 - 6.5, and the 95 th percentile 8.0 - 8.8.	The 5 th percentile of the data is \leq 5.7 and the 95 th percentile is \geq 8.6.
Temperature	Moderate change to temperature expected due to upstream Floriskraal Dam.	Initiate baseline monitoring for this variable.
Dissolved oxygen	The 5 th percentile of the data is between ≥ 7.0 mg/L. Although some impacts are expected due to the upstream Floriskraal Dam, the size of the river should mitigate the effects.	The 5 th percentile of the data is between 7.2 - 7.0 mg/L. Initiate baseline monitoring for this variable.
Turbidity	Changes in turbidity are related to minor man-made modifications. Some silting of habitats is expected.	Initiate baseline monitoring for this variable.
Nutrients	•	
TIN-N	The 50 th percentile of the data is between ≤ 0.48 mg/L.	The 50 th percentile of the data is between 0.38 - 0.48 mg/L.
PO ₄ -P	The 50 th percentile of the data is between ≤ 0.015 mg/L.	The 50th percentile of the data is between 0.012 - 0.015 mg/L.
Response variable	s	
Chl-a phytoplankton	The 50 th percentile of the data is between < 10 µg/L.	The 50^{th} percentile of the data is between 8 - 10 μ g/L.
Chl-a periphyton	The 50 th percentile of the data is between ≤ 12 mg/m².	The 50 th percentile of the data is between 10 - 12 mg/m ² .
Toxics		
Fluoride	The 50 th percentile of the data is between ≤ 1.5 mg/L.	The 50 th percentile of the data is between 1.2 - 1.5 mg/L.
Ammonia (NH3-N)	The 50 th percentile of the data is between ≤ 0.015 mg/L.	The 50th percentile of the data is between 0.012 - 0.015 mg/L.
Other toxics	The 95 th percentile of the data is between within the TWQR as stated in DWAF (1996) or the A Category boundary as stated in DWAF (2008).	An impact is expected if the 95th percentile of the data exceeds the TWQR as stated in DWAF (1996) or the upper limit of the A Category boundary as stated in DWAF (2008).

Table 5.17: PES categories and overall site assessment for Gouritz River at J4GOUR-EWR6

RIVER	Gouritz	River	WATER QUA	ALITY MONIT	ORING POINTS
WQRU		RC	J4H0020	ere sourced from DWS gauging weir Q01 (WMS code 102201), located m of the EWR site. (Data record: 1965 – = 29)	
EWR SITE J4GOUR-EWR6		PES	Data were sourced from DWS gauging we J4H002Q01 (Data record: 2010 – 2014; n 85).		
Confidence assessment Confidence 3					
Water Quality	Constituents		PES Value		Category/Comment
	SO ₄		693.0		No guideline, but a reduction over time.
Inorganic	Na		964.0		Exceeds the ≤ 70 mg/L (TWQR) for Agricultural Use: Irrigation. Significant increase over time.
salts (mg/L)	Mg		127.0		No guideline.
	Ca		123.3		No guideline.
	CI		1 289.3		Exceeds the ≤ 100 mg/L (TWQR) for Agricultural Use: Irrigation.
	K		9.81		No guideline.
Nutrients	SRP		0.015		B/C
(mg/L)	TIN		0.05		A
	pH (5 th – 95 ^{tl}		7.8 and 8.65		В
Discordand	Temperature		N/A N/A		-
Physical Variables	Turbidity (N7	issolved oxygen		N/A Impact expected at low to	
	Electrical (mS/m)	conductivity	542.5		No change from the 1970s.
	Chl a: phytor	olankton	N/A		N/A
Response variables	Macroinverte	ebrates	75.0%		С
	Diatoms	Diatoms		je)	C/D
	Fish commu	nity score	50.1%		D
	Ammonia (as	s N)	0.015		A
Toxics Fluoride (as F)		1.082		A. Substantial increase from the 1960s.	
OVERALL SIT	E CLASSIFIC	ATION	В/0	C Category	

Table 5.18: Water quality) EcoSpecs and TPCs (Category B/C) for Gouritz River at J4GOUR-EWR6

Metrics	EcoSpecs	TPCs
Inorganic salt ion	S	
Sulphate as SO ₄	The 95 th percentile of the data is between ≤ 690 mg/L.	The 95 th percentile of the data is between 550 - 690 mg/L.
Sodium as Na	The 95 th percentile of the data is between ≤ 960 mg/L.	The 95 th percentile of the data is between 770 - 960 mg/L.
Magnesium as Mg	The 95 th percentile of the data is between ≤ 130 mg/L.	The 95 th percentile of the data is between 105 - 130 mg/L.
Calcium as Ca	The 95 th percentile of the data is between ≤ 120 mg/L.	The 95 th percentile of the data is between 95 - 120 mg/L.
Chloride as Cl	The 95 th percentile of the data is between ≤ 1300 mg/L.	The 95 th percentile of the data is between 1050 - 1300 mg/L.
Potassium as K	The 95 th percentile of the data is between ≤ 10 mg/L.	The 95^{th} percentile of the data is between 8 - 10 mg/L.
Physical variables	•	
Electrical conductivity (mS/m)	The 95 th percentile of the data is between ≤ 550 mS/m.	The 95 th percentile of the data is between 450 - 550 mS/m.
pН	The 5 th percentile of the data is between 5.9 - 6.5, and the 95 th percentile 8.0 - 8.8.	The 5^{th} percentile of the data is ≤ 5.7 and the 95^{th} percentile is ≥ 8.6 .
Temperature	Natural temperature range.	Initiate baseline monitoring for this variable.
Dissolved oxygen	The 5 th percentile of the data is between ≥ 7.0 mg/L.	The 5 th percentile of the data is between 7.2 - 7.0 mg/L. Initiate baseline monitoring for this variable.
Turbidity	Changes in turbidity are related to minor man-made modifications. Some silting of habitats is expected.	Initiate baseline monitoring for this variable.
Nutrients	4	
TIN-N	The 50 th percentile of the data is between ≤ 0.25 mg/L.	The 50 th percentile of the data is between 0.2 - 0.25 mg/L.
PO ₄ -P	The 50 th percentile of the data is between ≤ 0.015 mg/L.	The 50 th percentile of the data is between 0.012 - 0.015 mg/L.
Response variable	es	
Chl-a phytoplankton	The 50 th percentile of the data is between < 10 µg/L.	The 50 th percentile of the data is between 8 - 10 µg/L.
Chl-a periphyton	The 50 th percentile of the data is between ≤ 12 mg/m².	The 50 th percentile of the data is between 10 - 12 mg/m ² .
Toxics		
Fluoride	The 50 th percentile of the data is between ≤ 1.5 mg/L.	The 50 th percentile of the data is between 1.2 - 1.5 mg/L.
Ammonia (NH₃-N)	The 50 th percentile of the data is between ≤ 0.015 mg/L.	The 50 th percentile of the data is between 0.012 - 0.015 mg/L.
Other toxics	The 95th percentile of the data is between within the TWQR as stated in DWAF (1996) or the A Category boundary as stated in DWAF (2008).	An impact is expected if the 95 th percentile of the data exceeds the TWQR as stated in DWAF (1996) or the upper limit of the A Category boundary as stated in DWAF (2008).

⁽a) N/A: No data were available for this assessment.

Table 5.19: PES categories and overall site assessment for Keurbooms River at K6KEUR-EWR8

RIVER	Keurt	ooms River	WATER QUAL	ITY MONIT	ORING POINTS
WQRU			RC		ory benchmark tables from DWAF /ere used.
EWR SITE	K6KE	UR-EWR8	PES	K6H001	re sourced from DWS gauging weir Q01 (WMS code 102295), located far 0 km) upstream of the EWR site. (Data 2007 – 2014; n = 121; Fluorine (F) =
Confidence a	ssessment	Confidence 3			
Water Quality	y Constituen	ts	PES Value		Category/Comment
	SO ₄		27.90		No guideline.
	Na		70.24		Just outside the ≤ 70 mg/L (TWQR) for Agricultural Use: Irrigation.
Inorganic	Mg		11.25		No guideline.
salts (mg/L)	Са		12.08		No guideline.
	CI		129.02		Just exceeds the ≤ 100 mg/L (TWQR) for Agricultural Use: Irrigation.
	K		2.76		No guideline.
Nutrients	SRP		0.012		В
(mg/L)	TIN		0.06		A
	pH (5 th – 9	5 th %)	6.6 and 7.8		В
	Temperatu	re (°C)	N/A		B. Some impacts expected at low flows, although on-site data still
Physical Variables	Dissolved	oxygen	N/A		shows high levels. B. Changes in turbidity appear to be
Variables	Turbidity (1	NTU)	N/A		largely related to natural with minor man-made modifications.
	Electrical (mS/m)	conductivity	54.6		B
	Chl a: phyt	oplankton	N/A		
Response variables	Macroinve	tebrates	64.0%		С
	Diatoms		9.9 (average)		C/D
	Fish comm	unity score	76.4%		С
.	Ammonia (as N)	0.001		Α
Toxics	Fluoride (a	s F)	0.26		Α
OVERALL SIT			B Cate	00001	I,

Table 5.20: Water quality EcoSpecs and TPCs (Category B) for Keurbooms River at K6KEUR-EWR8

Metrics	Eco Specs	TPCs
Inorganic salt ion	s	
Sulphate as SO ₄	The 95 th percentile of the data is between ≤ 28 mg/L.	The 95 th percentile of the data is between 22 - 28 mg/L.
Sodium as Na	The 95 th percentile of the data is between ≤ 70 mg/L.	The 95th percentile of the data is between 56 - 70 mg/L.
Magnesium as Mg	The 95 th percentile of the data is between ≤ 12 mg/L.	The 95 th percentile of the data is between 10 - 12 mg/L.
Calcium as Ca	The 95 th percentile of the data is between ≤ 12 mg/L.	The 95 th percentile of the data is between 10 - 12 mg/L.
Chloride as Cl	The 95 th percentile of the data is between ≤ 130 mg/L.	The 95 th percentile of the data is between 104 - 130 mg/L.
Potassium as K	The 95 th percentile of the data is between ≤ 3 mg/L.	The 95 th percentile of the data is between 2.4 - 3.0 mg/L.
Physical variables	3	
Electrical conductivity (mS/m)	The 95 th percentile of the data is between ≤ 55 mS/m.	The 95th percentile of the data is between 45 - 55 mS/m.
pН	The 5 th and 95 th percentile of the data is between 6.5 - 8.0.	The 5 th and 95 th percentile of the data is \geq 6.3 and \leq 8.2.
Temperature	Natural temperature range.	Initiate baseline monitoring for this variable.
Dissolved oxygen	The 5 th percentile of the data is between ≥ 7.0 mg/L.	The 5 th percentile of the data is between 7.2 - 7.0 mg/L. Initiate baseline monitoring for this variable.
Turbidity	Changes in turbidity are related to minor man-made modifications. Some silting of habitats is expected.	Initiate baseline monitoring for this variable.
Nutrients		
TIN-N	The 50 th percentile of the data is between ≤ 0.25 mg/L.	The 50 th percentile of the data is between 0.2 - 0.25 mg/L.
PO ₄ -P	The 50 th percentile of the data is between ≤ 0.015 mg/L.	The 50 th percentile of the data is between 0.012 - 0.0715 mg/L.
Response variable	es	
Chl-a phytoplankton	The 50 th percentile of the data is between < 10 µg/L.	The 50^{th} percentile of the data is between 8 - 10 μ g/L.
Chl-a periphyton	The 50 th percentile of the data is between ≤ 12 mg/m².	The 50 th percentile of the data is between 9.6 - 12.0 mg/m ² .
Toxics		
Fluoride	The 50 th percentile of the data is between ≤ 1.5 mg/L.	The 50 th percentile of the data is between 1.2 - 1.5 mg/L.
Ammonia (NH ₃ -N)	The 50 th percentile of the data is between ≤ 0.015 mg/L.	The 50 th percentile of the data is between 0.012 - 0.015 mg/L.
Other toxics	The 95 th percentile of the data is between within the TWQR as stated in DWAF (1996) or the A Category boundary as stated in DWAF (2008).	An impact is expected if the 95 th percentile of the data exceeds the TWQR as stated in DWAF (1996) or the upper limit of the A Category boundary as stated in DWAF (2008).

Table 5.21: PES categories and overall site assessment for Olifants River at J3OLIF-EWR9

RIVER	Olifants	River	WATER QUALI	TY MONIT	ORING POINTS
WQRU			RC	specialis use were available	ion available to the water quality t on water quality conditions and land- and the A Category benchmark tables (2008) were considered unsuitable.
EWR SITE	J3OLIF	-EWR9	PES	J3H0210 the present s of the EV Dam.	re sourced from DWS gauging weir Q01 (WMS code 102192) was used for state assessment located downstream VR site and upstream of Stompdrift cord: 1982 – 1993; n = 127).
Confidence a	ssessment	Confidence: 2	5		
Water Quality	/ Constituents		PES Value		Category/Comment
	SO ₄		1 353.4	1	No guideline but concentrations are high.
Inorganic	Na		1 774.5	5	Exceeds the ≤ 70 mg/L (TWQR) for Agricultural Use: Irrigation.
salts (mg/L)	Mg		336.0		No guideline
, ,	Са		284.4		No guideline
	CI		3 113		Exceeds the ≤ 100 mg/L (TWQR) for Agricultural Use: Irrigation.
	K		30.16		No guideline.
Nutrients	SRP		0.019		B/C
(mg/L)	TIN		0.11		A
	pH (5 th – 95 th		7.3 and 9	0.0	B/C but assumed to be linked to the groundwater signature.
	Temperature Dissolved ox		N/A N/A		C. Impact expected when little surface flow.
Physical Variables	Turbidity (N7	3000	N/A		B/C. Impact expected due to extensive livestock farming and erosion in the area.
	Electrical (mS/m)	conductivity	1 078.7	7	Natural salinity expected to be high due to the geology of the area
	Chl a: phytop	olankton	N/A		N/A
Response variables	Macroinverte	brates	69.0%		С
	Diatoms		6.0 (avera	ge)	D/E
	Fish commu	nity score	N/A		
Toxics	Ammonia (as	s N)	0.038		В
TOXICS	Fluoride (as	F)	0.678		A
OVERALL SIT	E CLASSIFIC	ATION	C Cate	gory	

Table 5.22: Water quality EcoSpecs and TPCs (Category C) for Olifants River at J3OLIF-EWR9

Metrics	Eco Specs	TPCs
Inorganic salt ion:	S	
Sulphate as SO ₄	The 95 th percentile of the data is between ≤ 1350 mg/L.	The 95 th percentile of the data is between 1080 - 1350 mg/L.
Sodium as Na	The 95 th percentile of the data is between ≤ 1775 mg/L.	The 95 th percentile of the data is between 1420 - 1775 mg/L.
Magnesium as Mg	The 95 th percentile of the data is between ≤ 335 mg/L.	The 95 th percentile of the data is between 270 - 335 mg/L.
Calcium as Ca	The 95 th percentile of the data is between ≤ 285 mg/L.	285 mg/L.
Chloride as Cl	The 95 th percentile of the data is between ≤ 3000 mg/L.	The 95 th percentile of the data is between 2400 - 3000 mg/L.
Potassium as K	The 95 th percentile of the data is between ≤ 30 mg/L.	The 95 th percentile of the data is between 24 - 30 mg/L.
Physical variables		**
Electrical conductivity (mS/m)	The 95 th percentile of the data is between ≤ 1100 mS/m.	The 95 th percentile of the data is between 880 - 1100 mS/m.
рН	The 5 th percentile of the data is between 5.9 - 6.5, and the 95 th percentile 8.8 - 9.2.	The 5 th percentile of the data is \leq 5.7 and the 95 th percentile is \geq 9.0.
Temperature	The upper Olifants mostly runs underground, with water appearing in	Initiate baseline monitoring for this variable.
Dissolved oxygen	places. This is not groundwater from a deep aquifer, but water from the vadose zone. Elevated temperatures and low DO levels would be expected under these conditions. EcoSpecs and TPCs are therefore difficult to set for these variables, and should rather be linked to meeting biotic requirements and monitoring biotic responses.	Initiate baseline monitoring for this variable where and if possible.
Turbidity	Changes in turbidity are related to minor man-made modifications. Some silting of habitats and temporary high turbidity levels are expected.	Initiate baseline monitoring for this variable.
Nutrients		
TIN-N	The 50 th percentile of the data is between ≤ 0.25 mg/L.	The 50 th percentile of the data is between 0.2 - 0.25 mg/L.
PO ₄ -P	The 50 th percentile of the data is between ≤ 0.025 mg/L.	The 50^{th} percentile of the data is between 0.02 - 0.025 mg/L.
Response variable	es ^(a)	
Chl-a phytoplankton	The 50 th percentile of the data is between < 15 µg/L.	The 50 th percentile of the data is between 12 - 15 μg/L.
Chl-a periphyton	The 50 th percentile of the data is between ≤ 21 mg/m ² .	The 50 th percentile of the data is between 17 - 21 mg/m ² .
Toxics		
Fluoride	The 50 th percentile of the data is between ≤ 1.5 mg/L.	The 50th percentile of the data is between 1.2 - 1.5 mg/L.
Ammonia (NH ₃ -N)	The 50 th percentile of the data is between ≤ 0.044 mg/L.	The 50 th percentile of the data is between 0.035 - 0.044 mg/L.
Other toxics	The 95 th percentile of the data is between within the TWQR as stated in DWAF (1996) or the A Category boundary as stated in DWAF (2008).	An impact is expected if the 95th percentile of the data exceeds the TWQR as stated in DWAF (1996) or the upper limit of the A Category boundary as stated in DWAF (2008).

Table 5.23: PES categories and overall site assessment for Kammanassie River at J3KAMM-**EWR10**

RIVER	Kamma	anassie River	WATER QUA	ALITY MON	IITORING POINTS
WQRU			RC	asses diaton notes and ge	ta were available for the water quality sment. Land use and available information of data, in situ water quality data and survey were used to provide an expert opinion enerate a PAI model and integrated water a category for the site.
EWR SITE	J3KAM	M-EWR10	PES	N/A	
Confidence a	ssessment	Confidence: 2			
Water Quality	y Constituents		PES Value		Category/Comment
	SO ₄		N/A		N/A
	Na		N/A		N/A
Inorganic	Mg		N/A		N/A
salts (mg/L)	Ca		N/A		N/A
	CI		N/A		N/A
	K		N/A		N/A
Nutrients	SRP		N/A		N/A
(mg/L)	TIN		N/A		N/A
	pH (5 th – 95 ^{ti}		N/A		N/A
	Temperature		N/A		N/A
Physical Variables	Dissolved ox	,,,	N/A		N/A
variables	Turbidity (NT		N/A		N/A
	Electrical (mS/m)	conductivity	N/A		N/A
	Chl a: phytop	olankton	N/A		N/A
	Macroinverte	ebrates	C/D		
Response variables	Diatoms		C/D		The biological water quality at this site was Moderate. Nutrient levels, organic pollution and salinity were elevated with salinity and organic pollution levels becoming problematic. The improvement in diatom-based water quality could mainly be ascribed to higher flows during July 2014 which allowed for the flushing of pollutants as diatom species associated with elevated flows were abundant.
	Fish commun	nity score	D		
	Ammonia (as	s N)			
Toxics	Fluoride (as I	F)			
OVERALL SIT	E CLASSIFIC		0.0	ofogo	
			U U	ategory	

a) N/A: No data were available for this assessment.

Note that limited water quality data exists for the Kammanassie River system. The water quality assessment is therefore based on available information and expert judgement.

Table 5.24: PES categories and overall site assessment for Groot Brak WQSU 1 & 2. (expert judgment)

RIVER		Groot Br	ak River	WATER C	QUALITY MONITORING POINTS
WQSU		WQSU 1	+ 2	RC	Default boundary tables for "A" category river
EWR SITE		None		PES	Groot Brak R. at Emest Robertson dam - K2H005-Q01 (1983 – 1996; n = 29)
Confidence ass	sessme	ent	Very low because ext	rapolated from outflo	ow from a dam, and not current data.
Water Quality (Constitu	uents		Value	Category/Comment
	MgSC	O ₄			
	Na ₂ S	O ₄			
Inorganic salts	MgCl:	2			
(mg/L)	CaCla	2			No data
	NaCl				
	CaSC)4			
Nutrients	SRP	(mg/l)		0.042	Unreliable data used
(mg/L)	TIN (r	ng/l)		<0.25	A category
	pH (5	th - 95 th %)	4.62	Naturally acidic
		erature			No data
Physical	Disso	lved oxyge	en		Expected to be high
Variables	Turbio	dity (NTU)			Expected to be low
	Electr	ical condu	ctivity (mS/m)	<30	A category
	Chl a:	periphyto	n		No data
Response	Chl a:	phytoplan	kton		No data
variables	Macro	invertebra	tes (ASPT)		No data
	Fish c	ommunity	score		No data
Toxics					No data – expected to be minimal
OVERALL SITE	CLASS	SIFICATIO	N	A/B (from e	expert judgment)

Table 5.25: Water quality Ecospecs and TPC's (Category A/B) for Groot Brak River at WQSU 1&2

RIVER		Groot Brak River	WATER QUALITY MONITORING POINTS	NONITORING PO	INTS	
WQSU		WQSU 1&2	DWAF WQ WMS	Currently, no r	Currently, no monitoring station	
EWR SITE		GB 1	RHP	Currently, no monitoring site	nonitoring site	
Confidence in	Confidence in PES assessment	Very Low because extrapolated from WQSU 3	apolated from WQSU	3		
Water Quality Constituents	Constituents	PES Category	WQ	Improvement required?	ТРС	Monitoring
	MgSO ₄		≤23 mg/L		95th percentile to be < 23 mg/L	
	Na ₂ SO ₄		≤33 mg/L		95th percentile to be < 33 mg/L	
Inorganic	MgCl ₂	Not available	≤30 mg/L	N/A	95th percentile to be < 30 mg/L	Monthly
salts (IIIg/L)	CaCl ₂		≤57 mg/L		95th percentile to be < 57 mg/L	
	NaCl		≤191 mg/L		95th percentile to be < 191 mg/L	
Nutrients	SRP	Category = C.	≤0.012 mg/L	Yes to A	50th percentile to be < 0.012 mg/L	Monthly
(mg/L)	N.	Category = A	≤0.25 mg/L	No	50th percentile to be < 0.25 mg/L	Monthly
	Hd	Naturally acidic river	< 7.9	9	95th percentile to be < 7.9	Monthly
i	Temperature	No data, but not	Maintain range	N/A	Maintain natural range	Monthly
Physical	Dissolved oxygen	considered to be	7 – 8 mg/L	N/A	5th percentile to be > 7 mg/L	Monthly
Variables	Turbidity (NTU)	problem in this river.	Moderate change	N/A	Moderate change allowed	Monthly
	Electrical conductivity (mS/m)	Category = A	≤30 mS/m	<u>8</u>	95th percentile to be < 30 mS/m	Monthly
	Chl a: periphyton	No data. Visual inspection March &	≤12 mg/m² (B category)	Š. 1	50th percentile to be < 12 mg/ m²	1
Response	Chl a: phytoplankton	June. No obvious sign of algae.	≤ 15 µg/L (B category)	W.A	50th percentile to be < 15 µg/L	Quarteny
variables	Macroinvertebrates (ASPT)	A (this study)	L C	1		
	Fish community score	C (this study	See Ecospecs for fish and invertebrates respectively	sii anu invertebrat	es respectively	
	Instream toxicity	No data	Assess only if the hi	omonitoring result	Accase only if the hiomonitoring racults indicate that there is a cerious problem and the cause is	si oango odt bag mai
Toxics		No data. Possibly some pesticides	unknown.		נא ווימוסמנס נוומר נווסוס וא מסווטעא או טא	din din die cause is

Table 5.26: PES categories and overall site assessment for Groot Brak Water at WQSU 3

RIVER			1.1.1	WATER QUALITY MONITORING
	Groot Brak River			POINTS
WQSU	WQSU 3		RC	Moordkuil R. at Banff - K1H005 (1979 – 1982 n = 91)
EWR SITE	GB 1		PES	K1H005 (2002 – 2006 n = 51)
Confidence assessment	Mediur	ım. NB: Becaus	e extrapo	Medium. NB: Because extrapolated from another catchment.
	Biologi	Biological data support inferred water quality	ort inferre	d water quality
Water Quality Constituents		RC value	PES Value	Category/Comment
	MgSO ₄			
	Na ₂ SO ₄			
Inorganic salts (mg/L)	MgCl ₂			No data
	CaCl ₂			
	NaCl			
	CaSO ₄			
Nitriente (ma/li)	SRP	*9000	0.029	Category = C. Increase in trend
ואמנוופוונט (וווש/ב)	NIL	0.04	90.0	Category = A. Trend stable
	pH (5th – 95th %)	Not calculated	6.6 – 7.9	
	Temperature			No data, but not considered to be
Physical Variables	Dissolved oxygen			problem variables, as not downstream of a major dam.
	Turbidity (NTU)			Slightly turbid on site visits in March and June 2007 (but after heavy rains).
	Electrical conductivity (mS/m)	40	30	Slight decrease in trend
	Chl a: periphyton			No data. Visual inspection March and
	Chl a: phytoplankton			June - no obvious signs of algae.
Kesponse variables	Macroinvertebrates (ASPT)	ı	⋖	Natural; ASPT = 8.0; SASS = 192 (this study)
	Fish community score	1	ပ	This study
Toxics				No data. Possibly some pesticides from
OVERALL SITE CLASSIFICATION		R /from DAI model	(lobour	agriculture.
		ב וומוו ז	lional)	

Table 5.27: Water quality Ecospecs and TPC's (Category B) for Groot Brak River at WQSU 3

RIVER		Groot Brak River	WATER QUALITY MONITORING POINTS	MONITORING PO	INTS	
WQSU		3	DWAF WQ WMS	Currently, no r	Currently, no monitoring station	
EWR SITE		GB 1	RHP	Currently, no r	Currently, no monitoring site	
Confidence in	Confidence in PES assessment	Low - medium, becaus	se extrapolated from M	foordkuil R. Biolog	Low – medium, because extrapolated from Moordkuil R. Biological data supports inferred PES for water quality.	water quality.
Water Quality Constituents	Constituents	PES Category	WQ Ecospecs	Improvement required?	ТРС	Monitoring
	MgSO ₄		≤23 mg/L		95th percentile to be < 23 mg/L	
	Na ₂ SO ₄		≤33 mg/L		95th percentile to be < 33 mg/L	
salts (mg/l)	MgCl ₂	Not available	≤30 mg/L	N/A	95th percentile to be < 30 mg/L	Monthly
Sales (mg/L)	CaCl ₂		≤57 mg/L		95th percentile to be < 57 mg/L	
	NaCl		≤191 mg/L		95th percentile to be < 191 mg/L	
Nutrients	SRP	Category = C.	≤0.02 mg/L	Yes to B	50th percentile to be < 0.02 mg/L	Monthly
(mg/L)	N.F.	Category = A	≤0.25 mg/L	No	50th percentile to be < 0.25 mg/L	Monthly
	PH	Naturally acidic river	< 7.9	No.	95th percentile to be < 7.9	Monthly
-	Temperature	No data, but not	Maintain range	N/A	Maintain natural range	Monthly
Voriobloc	Dissolved oxygen	considered to be	7 – 8 mg/L	N/A	5 th percentile to be > 7 mg/L	Monthly
Vallables	Turbidity (NTU)	problem in this river.	Moderate change	N/A	Moderate change allowed	Monthly
	Electrical conductivity (mS/m)	Category = A	≤30 mS/m	No	95th percentile to be < 30 mS/m	Monthly
	Chl a: periphyton	No data. Visual inspection March &	≤12 mg/m² (B category)	<u> </u>	50^{th} percentile to be < 12 mg/ m ²	
Response	Chl a: phytoplankton	June. No obvious sign of algae.	≤ 15 µg/L (B category)	V	50th percentile to be < 15 µg/L	Quarteny
variables	Macroinvertebrates (ASPT)	A (this study)	1	1000		
	Fish community score	C (this study	See Ecospecs for fish and invertebrates respectively	sii ariu irivertebrat	es respectively	
	Instream toxicity	No data	Access only if the his	fl. 202 painofiaomo	down outside a si cacht toth otocitai si	20100 out
Toxics		No data. Possibly some pesticides	unknown.		Assess only if the bioliforming results marked that there is a serious problem and the cause is unknown.	voem and me causo

Table 5.28: PES categories and overall site assessment for Groot Brak WQSU 4 (*boundary value recalibrated) (expert judgment)

RIVER	Groot B	rak		WATE	ER QUAL	LITY N	MONITORING POINTS
WQSU	4			RC		Groot Brak R. at Wolwedans - K2H002-Q01 (1976 – 1978; n = 68)	
EWR SITE	None			PES		K2H002 (2002 – 2006; n = 57)	
Confidence a	ssessment						SU, above point source of e dam construction
Water Quality	Constituents	1	RC Value		PES Valu	ıe	Category/Comment
Inorganic	MgSO ₄						
salts (mg/L)	Na ₂ SO ₄						
	MgCl ₂						
	CaCl ₂						No data
	NaCl						
	CaSO ₄						
Nutrients	SRP		0.016*	(0.037		Category = C. Trend increasing
(mg/L)	TIN		0.04	(0.075		Category = A. Trend increasing
Physical Variables	pH (5 th – 95 th	%)		(6.8 – 8.1		Based on Monitoring station located in WQSU, above point source of village
	Temperature				No data		May be a problem considering
	Dissolved oxy	/gen			No data		downstream of dam. Requires
	Turbidity (NT	J)		1	No data		monitoring
	Electrical con (mS/m)		30		52		Category = B. Trend increasing
Response	Chl a: periphy	rton					No data
variables	Chl a: phytop	lankton					No data
	Macroinvertel (ASPT)	orates					No data
	Fish commun	ity score					No data
Toxics							No data
OVERALL SIT	E CLASSIFICA	TION	B/C (expert	iudamer	nt)	-	

Table 5.29: Water quality Ecospecs and TPC's (Category B/C) for Groot Brak River at WQSU 4

CL						
KIVEK		Groot Brak River	WATER QUALITY MONITORING POINTS	CONTORING PO	SIN	
WQSU		4	DWAF WQ WMS	Currently, no n	Currently, no monitoring station	
EWR SITE		GB 1	RHP	Currently, no monitoring site	nonitoring site	
Confidence in	Confidence in PES assessment	Very Low, because extrapolated from WQSU 3.	trapolated from WQSU	13.		
Water Quality Constituents	Constituents	PES Category	WQ	Improvement required?	ТРС	Monitoring
	MgSO ₄		≤23 mg/L		95th percentile to be < 23 mg/L	
-	Na ₂ SO ₄		≤33 mg/L		95th percentile to be < 33 mg/L	
Inorganic	MgCl ₂	Not available	≤30 mg/L	N/A	95th percentile to be < 30 mg/L	Monthly
sales (IIIg/L)	CaCl ₂		≤57 mg/L		95th percentile to be < 57 mg/L	
	NaCl		≤191 mg/L		95th percentile to be < 191 mg/L	
Nutrients	SRP	Category = C.	≤0.025 mg/L	Yes to B/C	50th percentile to be < 0.025 mg/L	Monthly
(mg/L)	NIL	Category = A	≤0.25 mg/L	No No	50th percentile to be < 0.25 mg/L	Monthly
	Hd	Naturally acidic river	< 7.9	N _o	95th percentile to be < 7.9	Monthly
	Temperature	No data, but not	Maintain range	N/A	Maintain natural range	Monthly
Physical	Dissolved oxygen	considered to be	7 – 8 mg/L	N/A	5 th percentile to be > 7 mg/L	Monthly
variables	Turbidity (NTU)	problem in this river.	Moderate change	N/A	Moderate change allowed	Monthly
	Electrical conductivity (mS/m)	Category = A	≤30 mS/m	No No	95th percentile to be < 30 mS/m	Monthly
	Chl a: periphyton	No data. Visual inspection March &	≤12 mg/m² (B category)	4	50^{th} percentile to be < 12 mg/ m ²	-
Response	Chl a: phytoplankton	June. No obvious sign of algae.	≤ 15 µg/L (B category)	N.A	50 th percentile to be < 15 μg/L	Quarteny
variables	Macroinvertebrates (ASPT)	A (this study)	T 000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	
	Fish community score	C (this study	See Ecospecs for fish and invertebrates respectively	sn and invertebrate	es respectively	
	Instream toxicity	No data	Assocs and if the hi	Huson painting	der a circus a ai arott text atacibai a	oi conce out but mal
Toxics		No data. Possibly some pesticides	unknown.		Assess only it the promoting results marked that there is a serious problem and the cause is unknown.	iem and me cause is

Table 5.30: Water quality Ecospecs and TPC's for Malgas River at WQSU2

RIVER	Malga	as River		WATER	QUALITY MONITORING PO	INTS
WQSU	WQS	SU 2	RC	Default v	alues	
EWR SITE	Mal 1		PES		R. at Blanco - -Q01 ('01 – '06 n = 53)	
Confidence assessment		Good for the ov	verall WQSU. L	ow for the	EWR Site.	
Water Qualit	y Constit	uents	RC Value	PES Value	Category/Comment	G-power (Confidence)
	MgSO ₄					
	Na ₂ SO ₄					
Inorganic	MgCl ₂					No doto
salts (mg/L)	CaCl ₂					No data
	NaCl					
	CaSO ₄					
Nutrients	SRP		≤0.005	0.038	Category = C. Trend increasing.	0.116 (Low)
(mg/L)	TIN		≤0.25	0.413	Category = A/B. Trend increasing	
	рН (5 th -	+ 95 th %ile)		4.3 + 7.2	Naturally acidic.	0.84 (High)
Physical	Tempera		16.3 (50%ile)	-	No PES data. Not expected to be a problem	
Variables		ed oxygen			since no dam upstream No data. Could be a	
	Turbidity	/ (NTU)			problem due to quarry	
	Electrica (mS/m)	al conductivity	<30	15	Category = A. Trend = slight increase	0.64 (Medium)
	Chl a: pe	eriphyton			No data	No data (but visual
Response variables	Chl a: pl	hytoplankton			No data	inspection at EWR site indicated localised problem).
	Macroin	vertebrates			A category; ASPT = 8.2, SASS = 164 (this study)	
	Fish con	nmunity score			C/D (this study)	
Toxics					No data. Possible toxicity from quarry/cement/asphalt works, outflows from village and agricultural return flows	
OVERALL S	ITE CLAS	SIFICATION	B Categor	y (from PA	Al model)	

Table 5.31: PES categories and overall site assessment for Maalgate River

RIVER		Moeras/M	laalgate River		WA.	TER	QUALITY MONITORING POINTS
WQSU		N/A			RC	riv	efault boundary tables for A category ver
EWR SITE		Moe 1 & I	Maa 2		PES		aalgate R. @ Noetze Kamma 3H003 ('02 – '06; n = 52)
Confidence assessr	nent		Good.				
Water Quality Const	tituents	•		Va	lue		Category/Comment
Nutrients (mg/L)	SRP			0.0	019		Category = B (TP = 0.015 mg/L
	TIN			0.			Category = A
	pH (5	th - 95th %)	5.7	7 – 7.7		Naturally acidic
	Temp	erature					No data. May be impacted (by abstraction)
Physical Variables	Disso	lved oxyge	en				No data. May be impacted (due to excessive abstraction)
		dity (NTU)					No data. Site visit indicated not elevated.
	Electr	ical condu	ctivity (mS/m)	63			Category = C
	Chl a:	periphyto	n				No data. Site visit indicated extensive periphyton
Response variables	Chl a: phytoplankton						No data
Response variables	Macro	oinvertebra	ates (ASPT)				D (present study) Fair (RHP)
	Fish o	ommunity	score				D (present study)
Toxics							No data — expected to be pesticides from intensive agricultural activity
OVERALL SITE CLA	SSIFIC	ATION		C Category (from expert judgement)			
			Bounda	ary v	alues		
Determinant					wer bour lue	dar	Upper boundary value
TIN (mg/L) – 50 th %ile)						2.0
PHYTOPLANKTON C	Chl a (µg	g/L) – 50 th	%ile	15			20
SRP or PO4 (mg/L) -	50 th %i	le					0.058
PERIPHYTON Chi a ((mg/m²)) – 50 th %i	le	12			21
pH $-$ 5 th %ile and 95 th	%ile			5 th	percentile	: 5.	00 – 5.23
TEMPERATURE (°C)	- 10 th	%ile and 9	90 th %ile	Va	ry by no n	nore	than 2°C from natural range
	-/I \ 6t	th 0/ ilo		6			
Dissolved oxygen (mg	J/L) - 3	7011 U		5.67			

Table 5.32: PES categories and overall site assessment for Gwaing (Malgas/Keur River) at WQSU1

RIVER	Malgas	River (Keur River)	WAT	TER QUALIT	Y MONITORING POINTS
WQSU	WQSU	1	RC		. @ George 2-Q01 ('77 – '79 n = 84)
EWR SITE	None		PES	K3H002	2-Q01 ('01 – '06 n = 65)
Confidence a	ssessment	Low. NB: extrapolat	ed from an adj	acent catchr	ment
Water Quality	Constituents		RC Value	PES Value	Category/Comment
	MgSO ₄				
	Na ₂ SO ₄				
Inorganic	MgCl ₂				No data
salts (mg/L)	CaCl ₂				No data
	NaCl				
	CaSO ₄				
Nutrients	SRP		0.014	≤0.014	* Category = A
(mg/L)	TIN		0.04	≤0.25*	9 7
	pH (5 th – 95 th			3.7 – 6	
Physical	Dissolved ox				No data but expected to be natural as little
Variables	Turbidity (N	⁻ U)			development in upstream catchment.
	Electrical co	nductivity (mS/m)	16	17	Category = A
	Chl a: periph	yton			No data
Response	Chl a: phytoj	olankton			140 data
variables	Macroinverte	ebrates			Good (RHP)
	Fish commu	nity score			Natural (RHP)
Toxics					No data
OVERALL SIT	E CLASSIFIC	ATION	A Category	(from exper	t judgement)
		Bou	ndary values		
Determinant			Lower I	ooundary	Upper boundary value
TIN (mg/L) – 5	0 th %ile				≤ 0.25
PHYTOPLANKTON Chl a (µg/L) – 50 th %ile					<10
SRP or PO4 (n	ng/L) – 50 th %il	е			≤ 0.005
PERIPHYTON	Chl a (mg/m²)	– 50 th %ile			< 1.7
pH – 5 th %ile a	and 95 th %ile		6.5 – 8.0	00	
TEMPERATUR	RE (°C) – 10 ^{th c}	%ile and 90 th %ile	Nat tem	p range	16
Dissolved oxyg	jen (mg/L) - 5 th	%ile	>8		
BIOLOGICAL I	NDICATOR (A	SPT)	7		

Table 5.33: PES categories and overall site assessment for Gwaing (Malgas River) at WQSU2

RIVER		as River				MONITORING POIN	TS
WQSU	WQS	SU 2	RC	Default va			
EWR SITE	Mal	1	PES		. @ Blanco - 201 ('01 – '06	S n = 53)	
Confidence assessmen		Good for the ov	verall WQSU.	Low for the	e EWR Site.		
Water Qual	ity Const	ituents	RC Value	PES Value	Category	//Comment	G-power (Confidence)
	MgSO ₄						,
	Na ₂ SO ₄	1					
Inorganic salts	MgCl ₂						No data
mg/L)	CaCl ₂						No data
	NaCl						
	CaSO ₄						
Nutrients	SRP		≤0.005	0.038	increasin		0.116 (Low)
(mg/L)	TIN		≤0.25	0.413	increasin	= A/B. Trend	
	pH (5 th	– 95 th %)		4.3 – 7.2	Naturally	acidic.	0.84 (High)
	Temper	rature	16.3 (50%ile)	_		data. Not expected roblem since no	
Physical Variables	Dissolve	ed oxygen	(00701107		dam upst	ream	
Vallabics	Turbidit	y (NTU)				Could be a due to quarry	
	Electric (mS/m)	al conductivity	<30	15	Category	= A. Trend = slight	0.64 (Medium
	Chl a: p	eriphyton			No data		No data (but
Response variables	Chl a: phytoplankton				No data		visual inspection indicated localised problem).
	Macroir	vertebrates				ry; ASPT = 8.2, 164 (this study)	
	Fish co	mmunity score				C/D (this study)	
Toxics					from qua	Possible toxicity rry/cement/asphalt utflows from village n flows	
OVERALL S	SITE CLA	SSIFICATION	B Catego	ry (from PA	Al model). Lil	cely to be better at I	EWR site itself.
			Bou	ndary valu			
Determinan	it			Lower b	oundary	Upper boundary	value
TIN (mg/L) -	- 50 th %ile					0.75	
PHYTOPLA	NKTON C	hl a (μg/L) – 50 th	%ile	5		10	
SRP or PO4	(mg/L)	50 th %ile				0.02	
PERIPHYTO	ON Chl a (mg/m²) – 50 th %i	le	1.7		12	
pH – 5 th %ile	e and 95 th	%ile			entile: 6.00 – centile: 8.37 -		
TEMPERAT	URE (°C)	– 10 th %ile and 9	90 th %ile	Nat tem			
Dissolved ox	kygen (mg	/L) - 5 th %ile		7			
BIOLOGICA	LINDICA	TOR (ASPT)		6.34			

Table 5.34: PES categories and overall site assessment for Gwaing (Gwaing River) at WQSU3

RIVER		Gwaing	River	WATER Q	UALITY	MON	IITORING POINTS	
WQSU		WQSU:	3	RC		Defa	ult values	
EWR SITE		None		PES		No D	WAF monitoring station	
Confidence a	ssessi	nent	Low for RC as def station, but suppo	fault values use	d. Med itoring o	ium foi lata ar	r the PES as no monitoring nd (limited) supplementary da	
Water Quality	Cons	tituents		RC Value	PES		Category/Comment	
	MgS	O ₄						
	Na ₂ S	SO ₄						
Inorganic	MgC	12						
salts (mg/L)	CaC	l ₂					No data	
	NaC	1						
	CaS	O ₄						
Nutrients	SRP)		≤0.005	1.4	mg/L	Category = F	
(mg/L)	TIN			≤0.25			Category = D	
		5 th - 95 th	%)					
Dhysical		perature olved oxy	vaon.				No data. Likely to be a	
Physical Variables		idity (NT	W		+		problem with low DO and elevated turbidity	
	-	- ' '	<30	49		Ciovated tarbidity		
Electrical conductivity (mS/m) Chl a: periphyton					+			
Response		a: phytopl					No data	
variables	Mac	roinverteb	orates (ASPT)				RHP = "Poor water quality	
	Fish	communi	ty score					
Toxics							No data, but likely to be a problem	
OVERALL SIT	E CLA	SSIFICA	TION	D/E Category (expert judgement)				
			Bou	ndary values				
Determinant				Lower I	oounda	iry	Upper boundary value	
TIN (mg/L) – 5	O th %ile)					4.0	
PHYTOPLANKTON Chl a (µg/L) – 50 th %ile			20			30		
SRP or PO4 (mg/L) – 50 th %ile							0.125	
PERIPHYTON	Chl a	(mg/m²) –	- 50 th %ile	21			84	
pH – 5 th %ile a	nd 95 th	%ile		5 th perce 95 th per				
TEMPERATUR	RE (°C)	- 10 th %	ile and 90 th %ile				1 4°C from natural range	
Dissolved oxyg	en (mg	g/L) - 5 th	%ile	4				
BIOLOGICAL I	NDICA	TOR (AS	PT)	5				

Where a difference in the water quality values for the Ecological Reserve and Basic Human Needs Reserve was found, the stricter or more protective value was selected for the water quality component of the Reserve.

Table 5.35: PES categories and overall site assessment for the Kaaimans River at WQSU 2

RIVER	Kaaim	ans River			QUALITY MONITORING P	POINTS
WQSU	WQSL	12	RC	Kaaiman K3H001-	s R. @ Barbierskraal - Q01 (′77 – ′81; n = 175)	
EWR SITE	Ka1		PES	K3H001-	Q01 ('01 – '06; n = 56)	
Confidence assessment	1,				nonitoring station is in the V transformation in the catch	
Water Qualit	y Constitu	ents	RC Value	PES Value	Category/Comment	G-power (Confidence)
	MgSO ₄					
	Na ₂ SO ₄					
Inorganic	MgCl ₂					No data
salts (mg/L)	CaCl ₂					No data
	NaCl					
	CaSO ₄					
Nutrients	SRP		0.011	0.028*	Category = B. Trend = slight increase	0.122 (Low)
(mg/L)	TIN		0.04	0.061	Category = A. Very slight increase in trend	
	pH (5 th ~			4.4 – 7.4	Naturally acidic waters	0.87 (High)
	Tempera Dissolved				No data. Unlikely to be a problem	
Physical Variables	Turbidity				No data. Visual inspection = low turbidity. Unlikely to be a problem	
	Electrical	conductivity (mS/m)	16	17	A Category. Trend = stable	0.87 (High)
	Chl a: pe	riphyton			No data. Visual	
	Chl a: ph	ytoplankton			inspection = no excessive algal growth	
Response variables	Macroinv	ertebrates			A category; ASPT = 8.0, SASS = 175 (this study). Natural (RHP)	
	Fish com	munity score			В	
Toxics					No data, but unlikely to be a problem	
OVERALL SI	TE CLASS	SIFICATION	A Catego	ory (calculate	ed from PAI model)	

Table 5.36: Water Ecospecs for the Kaaimans River in K30C

Quality Constituent	Parameter	Ecological Reserve Requirements	Basic Human Needs Requirement ⁵	Reserve Requirement: water quality
General chemistry – major inorganic salts	MgSO ₄ (mg/l) ¹	< 16	N/A	< 16
	Na ₂ SO ₄ (mg/)l ¹	< 20	N/A	< 20
	MgCl ₂ (mg/l) ¹	< 15	N/A	< 15
	CaCl ₂ (mg/l) ¹	< 21	N/A	< 21
	NaCl (mg/l) 1	< 45	N/A	< 45
General chemistry – Major Ions	Sodium (mg/l)	N/A	<200	<200
	Magnesium (mg/l)	N/A	<100	<100
	Chloride (mg/l)	N/A	<200	<200
	Calcium (mg/l)	N/A	<80	<80
	Sulphate (mg/l)	N/A	<400	<400
Nutrients	Phosphate (PO ₄) (mg/l)	<0.02mg/L	N/A	<0.02mg/L
	Total Inorganic Nitrogen (mgN/I) ²	<0.25mg/L	N/A	<0.25mg/L
Physical water quality	pH (range) 5 th percentile 95 th percentile	6.7 7.4	5 9.5	5 7.4
	Dissolved Oxygen (mg/l) ¹	>1.7 mg/L	N/A	>1.7 mg/L
	Temperature ¹	Small change from natural		Small change from natural
	Electrical conductivity (mS/m) – USE ONLY IF AGGREGATED SALTS CANNOT BE PRODUCED	≤30mS/m	0-70	≤30mS/m
Biological water quality	Chl-a: periphyton ³	<1.7 mg/m²	N/A	
	Chl-a: phytoplankton ³	< 10 µg/L (A category)	N/A	
	Biotic community composition - macroinvertebrates	ASPT: 8 (A category)		
	In-stream toxicity	In-stream toxicity should not occur		
Toxics and complex mixtures	Toxics (as listed in DWAF, 1996 ⁶)	≤ TWQR	≤TWQR	≤ TWQR

NOTES:

1: 95th percentile compliance. ²: 50th percentile compliance. ³ Chl-a is not applicable to Desktop Reserve studies. ⁴ 90th percentile

ompliance for south African Water Quality Guidelines, Volume 1: Domestic Water Use, 2nd Ed. 1996. Department of Water Affairs and Forestry. Pretoria, South African Water Quality Guidelines, Volume 7: Aquatic Ecosystems, 2nd Ed. 1996. Department of Water Affairs and Forestry.

Pretoria, South Africa.

Table 5.37: PES categories and overall site assessment for the Diep River at WQSU 3 $\,$

Diep River		WATER Q	UALITY MONI	TORING POINTS
Ecore begin	egion 20.02 to the nning of the mountain	RC		oodville Forest Reserve ('77 – '80; n = 58)
3		PES	K4H003Q01	(°03 – '07; n = 36)
t	Moderate to high co	nfidence		
ity Constit	uents	RC Value	PES Value	Category/Comment
MgSO ₄		8.86	15.87	
Na ₂ SO ₄		0.00	0.00	
MgCl ₂		14.83	14.52	TEACHA was used for data
CaCl ₂		7.18	9.89	assessment. Salts = an A category
NaCl		102.10*	94.31	1
CaSO ₄		0.66	0.59	1
SRP		0.003	0.018	B/C category.
TIN		0.04	0.07	A category.
pH (5 th + 95 th %ile)		4.8 + 6.2	4.8 + 7.5	B category.
		-	-	No data but no impacts expected.
Dissolved	d oxygen	-	-	
Turbidity	(NTU)	-	-	No data. Slight evidence of sedimentation.
Electrical	conductivity (mS/m)		18.0	A category
Chl a: pe	riphyton	-	21.25	Some nutrient elevations shown by
Chl a: ph	ytoplankton	-	0.18	periphyton data (C/D category; n=1)
nse es Macroinvertebrates		ASPT ^{\$} : mean of 6.58	ASPT: 7.3 MIRAI**: 86.1%	B category for the present state.
Fish com	munity score	-	FRAI*: 86.1%	B category for the present state.
Diatoms		-	SPI#=17.6	High quality water
		-	-	No data, but some impact expected due to farming-related pesticides and fertilizer use.
ITE CLAS	SIFICATION	B (PAI mor	اما	
	WQS Ecore begir strea 3 t ity Constit MgSO4 MgSO4 MgCl2 CaCl2 NaCl CaSO4 SRP TIN pH (5th + Tempera Dissolved Turbidity Electrical Chl a: ph Macroinv Fish com Diatoms	WQSU 3 (start of level II Ecoregion 20.02 to the beginning of the mountain stream zone) 3 Moderate to high co ity Constituents MgSO4 Na ₂ SO ₄ MgCl ₂ CaCl ₂ NaCl CaSO ₄ SRP TIN pH (5 th + 95 th %ile) Temperature Dissolved oxygen Turbidity (NTU) Electrical conductivity (mS/m) ChI a: phytoplankton Macroinvertebrates Fish community score	WQSU 3 (start of level II Ecoregion 20.02 to the beginning of the mountain stream zone) 3 PES Moderate to high confidence MgSO4 8.86 Na2SO4 0.00 MgCl2 14.83 CaCl2 7.18 NaCl 102.10* CaSO4 0.66 SRP 0.003 TIN 0.04 pH (5th + 95th %ile) 4.8 + 6.2 Temperature Dissolved oxygen - Turbidity (NTU) - Electrical conductivity (mS/m) ChI a: phytoplankton - Macroinvertebrates RC Value RC Value ASPT*: mean of 6.58 Fish community score - Diatoms -	WQSU 3 (start of level II Ecoregion 20.02 to the beginning of the mountain stream zone) 3

^{*:} boundary value recalibrated
-: no data
#: Specific Pollution Index

^{*:} FRAI = Fish Response Assessment Index
**: MIRAI = Macro Invertebrate Response Assessment Index

^{\$:} ASPT = Average Score Per Taxon

Table 5.38: Water quality Ecospecs for Diep River (WQSU 3, K40A)

River: Diep		EWR Site: 3	Monitoring site: K4H003Q01				
Water qual	ity metrics		ECOSPEC				
	MgSO ₄	The 95th percentile of the	ne data must be ≤ 16 mg/L.				
	Na ₂ SO ₄	The 95th percentile of the	ne data must be ≤ 20 mg/L.				
	MgCl ₂	The 95th percentile of the	ne data must be ≤ 15 mg/L.				
Inorganic salts*	CaCl ₂	The 95th percentile of the	ne data must be ≤ 21 mg/L.				
	NaCl	The 95th percentile of the	ne data must be ≤ 191 mg/L.				
	CaSO ₄	The 95th percentile of the	ne data must be ≤ 351 mg/L.				
	EC	The 95th percentile of the	ne data must be ≤ 30 mS/m.				
рН		The 5 th and 95 th percen	tiles of the data must range from 4.5 to 7.5.				
Physical variables	Temperature	Small deviation from the natural temperature range.					
, my olour variables	Dissolved oxygen	The 5 th percentile of the data must be ≥ 7.5 mg/L.					
	Turbidity	Vary by a small amount from the natural turbidity range; minor silting of instreadable.					
Nutrients	TIN	The 50 th percentile of the	e data must be ≤ 0.25 mg/L.				
nutrents	PO ₄ -P	The 50th percentile of the	he 50th percentile of the data must be ≤ 0.025 mg/L.				
Response	Chl-a phytoplankton	The 50 th percentile of the	ne data must be <15 µg/L.				
variables	Chl-a periphyton	The 50th percentile of the	e data must be ≤ 52.5 mg/m².**				
Toxics		The 95 th percentile of the (TWQR) as stated in D	e data must be within the Target Water Quality Range NAF (1996).				

Table 5.39: Water quality TPC's for Diep River (WQSU 3, K40A)

River: Diep		EWR Site: 3	Monitoring site: K4H003Q01			
Water qual	ity metrics		TPC			
	MgSO ₄	The 95th percentile of the	ne data must be 13 – 16 mg/L.			
	Na ₂ SO ₄	The 95th percentile of the	ne data must be 16 – 20 mg/L.			
	MgCl ₂	The 95th percentile of the	ne data must be 12 – 15 mg/L.			
Inorganic salts*	CaCl ₂	The 95th percentile of the	ne data must be 17 – 21 mg/L.			
	NaCl	The 95th percentile of the	ne data must be 36 – 45 mg/L.			
	CaSO ₄	The 95th percentile of the	ne data must be 153 – 191 mg/L.			
	EC	The 95th percentile of the	ne data must be 24 – 30 mS/m.			
	pН	The 5 th and 95 th percer	tiles of the data must be <4.7 and >7.3.			
Physical variables	Temperature	Small to moderate deviation from the natural temperature range. Some highly emperature sensitive species in lower abundances and frequency of occurrence han expected for reference.				
	Dissolved oxygen	The 5 th percentile of the	e data must be 7.8 – 7.5 mg/L.			
	Turbidity	Moderate changes to the high sediment loads an	ne catchment land-use resulting in temporary unnaturally d high turbidities.			
Nutrients	TIN	The 50 th percentile of the	ne data must be 0.2 – 0.25 mg/L.			
numents	PO ₄ -P	The 50 th percentile of the	ne data must be 0.02 – 0.025 mg/L.			
Response	Chl-a phytoplankton	The 50 th percentile of the	ne data must be 12 – 15 μg/L.			
variables	Chl-a periphyton	The 50th percentile of the	ne data must be 42 – 52.5 mg/m².			
Toxics		The 95 th percentile of the (TWQR) as stated in D	ne data must be within the Target Water Quality Range WAF (1996).			

^{*} To be generated using TEACHA when the TPC for EC is exceeded or salt pollution expected.

** Periphyton (21.25 mg/m²) is actually in a C/D category (C = 12 - 21 and D = 21 - 84 mg/m²; DWAF, 2008), so have defined the upper boundary of a C/D as the EcoSpec.

CONTINUES ON PAGE 386 OF BOOK 4

Printed by and obtainable from the Government Printer, Bosman Street, Private Bag X85, Pretoria, 0001 Contact Centre Tel: 012-748 6200. eMail: info.egazette@gpw.gov.za Publications: Tel: (012) 748 6053, 748 6061, 748 6065

Vol. 674

August **Augustus**

2021

No. 44945

Part 4 of 4

N.B. The Government Printing Works will not be held responsible for the quality of "Hard Copies" or "Electronic Files" submitted for publication purposes

AIDS HELPLINE: 0800-0123-22 Prevention is the cure

Table 5.40: PES categories and overall site assessment for the Karatara River at WQSU 5

RIVER	Karatara River		WATER Q	UALITY MO	NITORING POINTS	
WQSU	WQSU 5 (source to Swartvlei)		RC		d. @ Karatara Forest Reserve 01 ('76 - '79; n = 115)	
EWR SITE	4		PES	K4H002Q0	01 ('03 – '07; n = 36)	
Confidence assessment Moderate as adequa		ite data to assess reference and present states				
Water Qual	ity Consti	tuents	RC Value	PES Value	Category/Comment	
	MgSO ₄		7.62	12.63		
	Na ₂ SO ₄ Hanic MgCl ₂		2.05	3.01		
Inorganic			4.43	4.16	TEACHA was used for data assessment	
salts (mg/L)	CaCl ₂		9.89	9.16	Salts = an A category.	
(g, _)	g/L) CaCl ₂ NaCl		35.59	36.15	1	
	NaCl CaSO ₄		0.73	0.73		
Nutrients	SRP		0.022 *	0.047	B category.	
(mg/L)	TIN		0.07	0.128	A category.	
	pH (5 th +	95 th %ile)	3.7 + 7.7	3.8 + 6.6	A category.	
	pH (5 th + 95 th %ile) Temperature Dissolved oxygen		-	-	No data but no impacts expected	
Physical	Dissolved oxygen		-	-		
Variables			-	-	No data. Slight evidence of sedimentation.	
			-	7.0	A category.	
	Chl a: periphyton		-	9.91		
Chi a: phytoplankton		-	0.09	B category for periphyton.		
Response variables	Macroinvertebrates		ASPT: 7.3	ASPT: 8.1 MIRAI: 92.3%	A/B category for the present state.	
Fish community score Diatoms		nmunity score	-	FRAI: 82.4%	B category for the present state.	
		-	SPI=19.9	High quality water		
Toxics			-	-	No data, but some impact from timber processing at Geelhoutvlei.	
OVERALL S	SITE CLAS	SIFICATION	B for WQS (PAI model		h an A category for upstream river stretch	

^{*:} boundary value recalibrated -: no data

Table 5.41: Water quality Ecospecs for Karatara River at WQSU 5

River: Karatara		EWR Site: 4	Monitoring site: K4H002Q01			
Water qual	ity metrics	ECOSPEC				
	MgSO ₄	The 95 th percentile of the data must be ≤ 16 mg/L.				
	Na ₂ SO ₄	The 95 th percentile of the data must be ≤ 20 mg/L.				
	MgCl ₂	The 95th percentile of th	e data must be ≤ 15 mg/L.			
Inorganic salts*	CaCl ₂	The 95th percentile of th	e data must be ≤ 21 mg/L.			
	NaCl	The 95 th percentile of the data must be ≤ 191 mg/L.				
	CaSO ₄	The 95 th percentile of the data must be ≤ 351 mg/L.				
	EC	The 95th percentile of th	e data must be ≤ 30 mS/m.			
	рН	The 5 th and 95 th percentiles of the data must range from 4.5 to 7.5.				
Physical variables	Temperature	Natural temperature range.				
	Dissolved oxygen	The 5 th percentile of the data must be ≥ 8.0 mg/L.				
	Turbidity	Vary by a small amount from the natural turbidity range; minor silting of instrhabitats acceptable.				
TIN		The 50 th percentile of the data must be ≤ 0.25 mg/L.				
Nutrients		The 50 th percentile of the data must be ≤ 0.075 mg/L.				
Chl-a		The 50 th percentile of the data must be < 10 μg/L.				
variables	Chl-a periphyton	The 50th percentile of th	e data must be ≤ 12 mg/m².			
Toxics		The 95 th percentile of the (TWQR) as stated in DV	e data must be within the Target Water Quality Range VAF (1996).			

^{*} To be generated using TEACHA when the TPC for EC is exceeded or salt pollution expected.

Table 5.42: Water quality TPC's for Karatara River at WQSU 5

River: Karatara		EWR Site: 4	Monitoring site: K4H002Q01			
Water qual	ity metrics		TPC			
	MgSO ₄	The 95th percentile of the	ne data must be 13 – 16 mg/L.			
	Na ₂ SO ₄	The 95th percentile of the	ne data must be 16 – 20 mg/L.			
	MgCl ₂	The 95th percentile of the	ne data must be 12 – 15 mg/L.			
norganic salts*	CaCl ₂	The 95th percentile of the	ne data must be 17 – 21 mg/L.			
	NaCl	The 95 th percentile of the data must be 36 – 45 mg/L.				
	CaSO ₄	The 95 th percentile of the data must be 153 – 191 mg/L.				
Physical variables	EC	The 95 th percentile of the data must be 24 – 30 mS/m.				
	рH	The 5 th and 95 th percentiles of the data must be <4.7 and >7.3.				
	Temperature	Small deviation from the natural temperature range.				
	Dissolved oxygen	The 5 th percentile of the data must be 8.2 – 8.0 mg/L.				
	Turbidity	Small to moderate changes to the catchment land-use resulting in minor a temporary effects of silting of habitats.				
Nutrionte		The 50 th percentile of the data must be 0.2 – 0.25 mg/L.				
Nutrients		he 50 th percentile of the data must be 0.06 – 0.075 mg/L.**				
Chl-a Response phytoplankton		The 50 th percentile of the data must be 8 – 10 μg/L.				
variables	Chl-a periphyton	The 50 th percentile of th	ne data must be 10 – 12 mg/m².			
Toxics		The 95 th percentile of th (TWQR) as stated in D\	ne data must be within the Target Water Quality Range NAF (1996).			

^{*} To be generated using TEACHA when the TPC for EC is exceeded or salt pollution expected.

*** Although the upper boundary for the relevant phosphate category is 0.125 mg/L, the TPC has been set at 0.075 mg/L as PES levels for phosphate were 0.046 mg/L.

Table 5.43: PES categories and overall site assessment for the Hoëkraal River at WQSU 4

RIVER	Hoëkra	al River	WATER	QUALITY MONITORI	NG POINTS	
WQSU	WQSU lower fo	4 (source to beginning of oothills)	RC	Hoëkraal R. @ Eastbrook K4H001Q01 ('77 - '80; n = 83)		
EWR SITE	-		PES	K4H001Q01 ('03 – '07; n = 28)		
Confidence assessment Low - Moderate as limite backup zone from Swar Hoëkraal River.		ited data fo artvlei lake	or the present state as Note that the gauging	sessment. Lower section in the weir is located on the lower		
Water Quali	ity Consti		RC Value	PES Value	Category/Comment	
	MgSO ₄		35.87	153.20		
	Na ₂ SO ₄		9.95	159.5	TEACHA was used for the	
Inorganic	MgCl ₂		35.92	100.33	analysis of WMS data. Results	
salts (mg/L)	CaCl ₂		24.80	45.24	should be disregarded as data shows salt intrusion from the	
	NaCl		399.69	1560.41	saline Swartvlei lake.	
	CaSO ₄		0.59	0.73		
Nutrients	SRP		0.014 *	0.034	B category.	
(mg/L)	TIN		0.06	0.088	A category.	
	pH (5 th + 95 th %ile)		4.4 + 7.2	4.5 + 7.8	A category.	
	Temperature		-	-	No data but no impacts	
Physical Variables	Dissolved oxygen		-	-	expected, although the river is deep and wide above the lower site, which may result in lowering oxygen levels.	
	Dissolved oxygen Turbidity (NTU)		-	-	No data, but some evidence of sedimentation.	
	Electrical conductivity (mS/m)			4.2: Upper site	A category	
	Chl a: periphyton		-	4.81: Upper site 152.93: Lower site	Lower site shows some nutrie	
Chl a: phytoplanktor		nytoplankton		0.14: Upper site 0.47: Lower site	build-up in the water.	
Response variables	Macroinvertebrates		_	-	Not assessed as not an EWR site.	
	Fish con	nmunity score	-	-		
	Diatoms		-	SPI=19.8: Upper river. SPI=16.2: Lower river.	Upper site: High quality water. Lower site: Good quality water.	
Toxics			-	-	No data, but no impacts expected.	
OVERALL S	ITE CLAS	SSIFICATION	C Categ	ory (PAI model)		

^{*} boundary value recalibrates

Table 5.44: Water quality Ecospecs for Hoëkraal River at WQSU 4

River: Hoëkraal		EWR Site: -	Monitoring site: K4H001Q01, although located in the lower section of the river and salt water intrusion detected due to back-up from Swartvlei Lake.			
Water qual	ity metrics	ECOSPEC				
	MgSO ₄	The 95th percentile of th	e data must be ≤ 16 mg/L.			
	Na ₂ SO ₄	The 95th percentile of th	e data must be ≤ 20 mg/L.			
	MgCl ₂	The 95 th percentile of the data must be ≤ 15 mg/L.				
Inorganic salts*	CaCl ₂	The 95 th percentile of the data must be ≤ 21 mg/L.				
	NaCl	The 95th percentile of th	e data must be ≤ 191 mg/L.			
CaSO ₄		The 95 th percentile of the data must be ≤ 351 mg/L.				
EC		The 95 th percentile of the data must be ≤ 30 mS/m.				
	рН	The 5 th and 95 th percentiles of the data must range from 4.5 to 7.5.				
Physical variables	Temperature	Small deviation from the natural temperature range.				
	Dissolved oxygen	The 5 th percentile of the data must be ≥ 7.5 mg/L.				
	Turbidity	Vary by a small amount from the natural turbidity range; minor silting of instre- habitats acceptable.				
Nutrients TIN		The 50 th percentile of the data must be ≤ 0.25 mg/L.				
Numents	PO ₄ -P	The 50 th percentile of the data must be ≤ 0.125 mg/L.				
Response phytoplankton		The 50 th percentile of the data must be <10 μg/L.				
variables	Chl-a periphyton	The 50th percentile of the	e data must be ≤ 12 mg/m².			
Toxics		The 95 th percentile of th (TWQR) as stated in DV	e data must be within the Target Water Quality Range VAF (1996).			

^{*} To be generated using TEACHA when the TPC for EC is exceeded or salt pollution expected.

Table 5.45: Water quality TPC's for Hoëkraal River at WQSU 4

River: Hoekraal		EWR Site: -	Monitoring site: K4H001Q01				
Water qual	lity metrics	TPC					
MgSO ₄ Na ₂ SO ₄		The 95 th percentile of the data must be 13 – 16 mg/L.					
	Na ₂ SO ₄	The 95 th percentile of the data must be 16 – 20 mg/L.					
	MgCl ₂	The 95 th percentile of the data must be 12 – 15 mg/L.					
Inorganic salts*	CaCl ₂	The 95th percentile of the da	ta must be 17 – 21 mg/L.				
	NaCl	The 95 th percentile of the data must be 36 – 45 mg/L.					
	CaSO ₄	The 95 th percentile of the data must be 153 – 191 mg/L.					
	EC	The 95 th percentile of the data must be 24 – 30 mS/m.					
Physical variables	рН	The 5 th and 95 th percentiles of the data must be <4.7 and >7.3.					
	Temperature	Small to moderate changes to the catchment land-use resulting in minor and temporary effects of silting of habitats.					
	Dissolved oxygen	The 5 th percentile of the data must be 7.8 – 7.5 mg/L.					
	Turbidity	Moderate changes to the catchment land-use resulting in temporary unnatural high sediment loads and high turbidities.					
TIN TIN		The 50 th percentile of the data must be 0.2 – 0.25 mg/L.					
Nutrients PO ₄ -P		The 50th percentile of the data must be 0.1 – 0.125 mg/L.					
Response	Chl-a phytoplankton	The 50 th percentile of the data must be 8 – 10 μg/L.					
variables	Chl-a periphyton	The 50th percentile of the da	ta must be 10 – 12 mg/m².				
Toxics		The 95 th percentile of the da (TWQR) as stated in DWAF	ta must be within the Target Water Quality Range (1996).				

Table 5.46: PES categories and overall site assessment for Goukamma River at WQSU 1

RIVER		Goukamma River	WATER	QUALITY MO	ONITORING POINTS	
WQSU	WQSU	1 (source to the end of the mountainous area)	RC	Ro K3H002-	oi R. @ George Q01 ('77 – '79 n = 84)	
		None	PES	K3H002-Q01 ('01 – '06 n = 65)		
Confidence as	sessment	Low to medium because catchment and like	no DWAF mon	itoring station or to other mo	n. However unimpacted ountain streams.	
Wa	iter Quality C	onstituents	RC Value	PES Value	Category/Comment	
		MgSO ₄				
Inorgania		Na ₂ SO ₄]	
Inorganic		MgCl ₂				
Inorganic salts (mg/L)		CaCl ₂			No data	
	NaCl					
		CaSO ₄				
Nutrients		SRP	0.014	≤0.014*	A category.	
(mg/L)		TIN	0.04	≤0.25*	A category.	
р		H (5 th - 95 th %)		3.7 - 6.7	Naturally acidic.	
		Temperature			No data but expected	
Physical	Dissolved oxygen				to be natural as little	
Physical Variables	Т	Turbidity (NTU)			development in upstream catchment	
	Electrica	Electrical conductivity (mS/m)		17	A category.	
	Ch	Chl a: periphyton			No data	
Response	Chl	Chl a: phytoplankton			No data	
variables	Ма	croinvertebrates			No data	
	Fish	community score			No data	
Toxics					No data.	
OVER	ALL SITE CL	ASSIFICATION		А		

Table 5.47: Water quality Ecospecs and TPCs for the Goukamma River at WQSU 2

RIVER		Goukamma River	WATER QUALITY MONITORING POINTS	ONITORING PO	INTS	
WQSU		2	DWAF WQ WMS	None		
EWR SITE		none	RHP	Currently a RH	Currently a RHP site higher up in catchment	
Confidence in	Confidence in PES assessment	Low because extrapolated from another catchment (Karatara R) and WQSU (Goucurent project and RHP upper catchment) support inferred PES for water quality.	ed from another catch upper catchment) su	ment (Karatara F pport inferred PE	Low because extrapolated from another catchment (Karatara R) and WQSU (Goukamma WQSU 2). Biological data (from current project and RHP upper catchment) support inferred PES for water quality.	Biological data (from
Water Quality Constituents	Constituents	PES Category	WQ	Improvement required?	TPC	Monitoring frequency
	MgSO ₄		≤16 mg/L		95th percentile to be < 16 mg/L	
	Na ₂ SO₄		≤20 mg/L		95th percentile to be < 20 mg/L	
inorganic salts (mg/l)	MgCl ₂	Not available	≤15 mg/L	N/A	95th percentile to be < 15 mg/L	Every 2 months
Sales (1119/1-)	CaCl ₂		≤21 mg/L		95th percentile to be < 21 mg/L	
	NaCl		≤45 mg/L		95th percentile to be < 45 mg/L	
Nutrients	SRP	A	≤0.012 mg/L	Yes - B/C	50th percentile to be < 0.025 mg/L	Every 2 months
(mg/L)	NIL	А	≤0.25 mg/L	No	50th percentile to be < 0.25 mg/L	Every 2 months
	표	Naturally acidic river	< 6.4	No	95th percentile to be < 6.4	Every 2 months
ī	Temperature	No data. Visual	Natural range	N/A	Natural temp. range	Every 2 months
Physical	Dissolved oxygen	inspection did not reveal	8 mg/L	N/A	5th percentile to be > 8 mg/L	Every 2 months
variables	Turbidity (NTU)	a turbidity problem.	No change	N/A	No change allowed	Every 2 months
	Electrical conductivity (mS/m)	A – Stable	≤30 mS/m	No	95th percentile to be < 30 mS/m	Every 2 months
	Chl a: periphyton	No data. Visual	≤ 1.7 mg/m² (A category)	V.	50^{th} percentile to be < 1.7 mg/m ²	
Response	Chl a: phytoplankton	a problem.	≤ 10 µg/L (B category)	Y.	50 th percentile to be < 10 μg/L	Quarteny
variables	Macroinvertebrates (ASPT)	B (this study)	1 000	7	100	
	Fish community score	C (this study	oee Ecospecs id	n iisri and inverte	See Ecospecs for fish and invertebrates respectively	
	Instream toxicity	No data	Unlikely to be a	problem. Assess	Unlikely to be a problem. Assess only if the biomonitoring results indicate there is a serious	e there is a serious
Toxics		No data.	problem and the	problem and the cause is unknown.	n. Č	

Table 5.48: PES categories and overall site assessment for Goukamma River at WQSU 2

RIVER	Gouka	Goukamma River		UALITY M	ONITORING POINTS		
WQSU	WQSU 2 (edge of mountainous/forested area to the upper limit of tidal influence - at approximately the N2 Bridge)		RC	Karatara R. @ Karatara State Forest K4H002-Q01 ('71 – '76; n = 107)			
EWR SITE	Gou 1		PES	K4H002-Q01 ('01 – '06; n = 51)			
Confidence assessmen		Low, the monitoring s	station is in a	n adjacent	catchment.		
Water Qual	ity Constitu	ents	RC Value	PES Value	Category/Comment	G-power (Confidence)	
	MgSO ₄						
	Na ₂ SO ₄						
Inorganic salts	MgCl ₂					No dota	
mg/L)	CaCl ₂					No data	
(1119/12)	NaCl						
	CaSO ₄						
Nutrients	SRP			0.048*	Category = C. Trend = increasing	0.232 (Low)	
(mg/L)	TIN			0.11	Category = A. Trend = stable		
	pH (5 th – 95 th %)			3.8 – 6.4	Naturally acidic waters	0.781 (Medium)	
Physical	Temperature				No data. Unlikely to be a problem		
Variables		Dissolved oxygen Turbidity (NTU)			No data. Visual inspection = low turbidity		
	Electrical conductivity (mS/m)		10	12	Category = A. Trend = stable	0.997 (High)	
	Chl a: peri	Chl a: periphyton			No data. Visual		
	Chl a: phy	Chl a: phytoplankton			inspection = no excessive algal growth		
Response variables	Macroinve	Macroinvertebrates			B category; ASPT = 7.2, SASS = 143 (this study). Natural (RHP)		
	Fish comm	nunity score			C (this study)		
Toxics					No data, but unlikely to be a problem		
OVERALL S	ITE CLASS	IFICATION	A Category	(PAI mod	lel)		

Table 5.49: Water quality Ecospecs and TPCs for the Goukamma River at WQSU 2

RIVER		Goukamma River	WATER QUALITY MONITORING POINTS	IONITORING PO	NTS	
WQSU			DWAF WQ WMS	None		
EWR SITE		Gou 1	RHP	Currently a RH	Currently a RHP site higher up in catchment	
Confidence in	Confidence in PES assessment	Low - medium because extrapolated from another catchrupper catchment) support inferred PES for water quality.	extrapolated from an	other catchment (ater quality.	Low - medium because extrapolated from another catchment (Karatara R). Biological data (from current project and RHP upper catchment) support inferred PES for water quality.	ent project and RHP
Water Quality Constituents	Constituents	PES Category	WQ	Improvement required?	TPC	Monitoring
	MgSO ₄		≤16 mg/L		95th percentile to be < 16 mg/L	
	Na ₂ SO ₄		≤20 mg/L		95th percentile to be < 20 mg/L	
salts (mg/l)	MgCl ₂	Not available	≤15 mg/L	N/A	95th percentile to be < 15 mg/L	Every 2 months
(1,8,11)	CaCl ₂		≤21 mg/L		95th percentile to be < 21 mg/L	
	NaCl		≤45 mg/L		95th percentile to be < 45 mg/L	
Nutrients	SRP	ပ	≤0.025 mg/L	Yes - B/C	50th percentile to be < 0.025 mg/L	Every 2 months
(mg/L)	Z	A	≤0.25 mg/L	N _o	50th percentile to be < 0.25 mg/L	Every 2 months
	ЬН	Naturally acidic river	< 6.4	2	95th percentile to be < 6.4	Every 2 months
Colorido	Temperature	No data. Visual	Natural range	N/A	Natural temp, range	Every 2 months
Variables	Dissolved oxygen	inspection did not reveal	8 mg/L	N/A	5th percentile to be > 8 mg/L	Every 2 months
valiables	Turbidity (NTU)	a turbidity problem.	No change	N/A	No change allowed	Every 2 months
	Electrical conductivity (mS/m)	A – Stable	≤30 mS/m	No	95th percentile to be < 30 mS/m	Every 2 months
	Chl a: periphyton	No data. Visual	≤ 1.7 mg/m² (A category)	V.IV	50^{th} percentile to be < 1.7 mg/m ²	
Response	Chl a: phytoplankton	a problem.	≤ 10 µg/L (B category)	V/N	50th percentile to be < 10 µg/L	
variables	Macroinvertebrates (ASPT)	B (this study)	L	-	-	
	Fish community score	C (this study	see Ecospecs IC	or iisn and invertei	see Ecospecs for itsn and invertebrates respectively	
	Instream toxicity	No data	Unlikely to be a	problem. Assess of	Unlikely to be a problem. Assess only if the biomonitoring results indicate there is a serious	e there is a serious
Toxics		No data.	problem and the	problem and the cause is unknown.	n.	

RIVER	Knynsa River		WATER Q	JALITY MONITOR	RING POINTS	
WQSU	WQSU 1		RC	Knysna R. @ Mill K5H002Q01 ('77		
EWR SITE	1		PES	K5H002Q01 ('04	– '07; n = 26)	
Confidence assessmer		Moderate as adequa	ate data to as	sess reference and	present states	
Water Qual	ity Constitu	uents	RC Value PES Value		Category/Comment	
	MgSO ₄		7.18	7.19		
	Na ₂ SO ₄		1.49 4.20			
Inorganic	MgCl ₂		2.60	2.73	TEACHA was used for data	
salts (mg/L)	CaCl ₂		11.50	3.92	assessment. Salts = A category	
(g/ = /	NaCl		50.83*	39.54		
	CaSO ₄		0.53	0.38		
Nutrients	CaSO ₄		0.011*	0.021	B category	
(mg/L)	TIN		0.06	0.112	A category	
	TIN pH (5 th + 95 th %ile) Temperature		4.0 + 6.9	4.5 + 7.2	A category	
	pH (5 th + 95 th %ile) Temperature		-	-	No data but no impacts expected	
Physical Variables	Dissolved oxygen		-	-	although less shading may result in a slight increase in instream temperature.	
Vallabloo	Turbidity (NTU)		-	-	No data. Some evidence of slight sedimentation seen.	
	Electrical conductivity (mS/m)			9.0	A category.	
	Chl a: periphyton		-	4.08	Some nutrient elevation indicated	
	Chl a: phytoplankton		-	0.12	by periphyton values (B category n=1).	
Response variables	Macroinvertebrates		ASPT: mean of 8.7	ASPT: 6.9 MIRAI: 86.92%	B category for the present state.	
	Fish comr	nunity score	-	FRAI: 86.4%	B category for the present state.	
	Diatoms		-	SPI=18.9	High quality water.	
Toxics			-	-	No data but no impacts expected	
OVERALL S	SITE CLASS	SIFICATION		SU 1, although an	A category for EWR 1 and	

Table 5.51: Water quality Ecospecs for Knysna River at WQSU 1

River: Knysna		EWR: 1	Monitoring site: K5H002Q01			
Water qual	ity metrics		ECOSPEC			
	MgSO ₄	The 95 th percentile of the data must be ≤ 16 mg/L.				
	Na ₂ SO ₄	The 95 th percentile of the data must be ≤ 20 mg/L.				
	MgCl ₂	The 95 th percentile o	f the data must be ≤ 15 mg/L.			
Inorganic salts*	CaCl ₂	The 95th percentile o	f the data must be ≤ 21 mg/L.			
	NaCl	The 95 th percentile of the data must be ≤ 45 mg/L.				
	CaSO ₄	The 95 th percentile of the data must be ≤ 351 mg/L.				
	EC	The 95th percentile o	f the data must be ≤ 30 mS/m.			
Physical variables	pН	The 5 th and 95 th percentiles of the data must range from 4.5 to 7.5.				
	Temperature	Natural temperature range.				
	Dissolved oxygen	The 5 th percentile of	the data must be ≥ 8.0 mg/L.			
	Turbidity	Vary by a small amount from the natural turbidity range; minor silting of instream habitats acceptable.				
Nutrients TIN The 5		The 50 th percentile of the data must be ≤ 0.25 mg/L.				
		The 50 th percentile of the data must be ≤0.025 mg/L.				
Chl-a Response phytoplankton		The 50 th percentile of the data must be <15 μg/L.				
variables	Chl-a periphyton	The 50th percentile of	f the data must be ≤ 12 mg/m².			
Toxics	1	The 95 th percentile of (TWQR) as stated in	f the data must be within the Target Water Quality Range DWAF (1996).			

^{*} To be generated using TEACHA when the TPC for EC is exceeded or salt pollution expected.

Table 5.52: Water quality TPC's for Knysna River at WQSU 1

River: Knysna	liver: Knysna Water quality metrics		Monitoring site: K5H002Q01	
Water qual			TPC	
	MgSO ₄	The 95th percentile	of the data must be 13 – 16 mg/L.	
	Na ₂ SO ₄	The 95th percentile	of the data must be 16 – 20 mg/L.	
I	MgCl ₂	The 95th percentile	of the data must be 12 – 15 mg/L.	
Inorganic salts*	CaCl ₂	The 95 th percentile	of the data must be 17 – 21 mg/L.	
	NaCl	The 95th percentile	of the data must be 36 – 45 mg/L.	
	CaSO ₄	The 95th percentile	of the data must be 280 – 351 mg/L.	
	EC	The 95 th percentile of	of the data must be 24 – 30 mS/m.	
	pH	The 5th and 95th per	centiles of the data must be <4.7 and >7.3.	
Physical variables	Temperature	Small deviation from	the natural temperature range.	
i ilysicai valiabios	Dissolved oxygen	The 5th percentile of	the data must be 8.2 – 8.0 mg/L.	
	Turbidity		o the catchment land-use resulting in <u>temporary</u> unnaturally and high turbidities.	
N1. 4.4 4.	TIN	The 50th percentile of	of the data must be 0.2 - 0.25 mg/L.	
Nutrients	PO ₄ -P	The 50th percentile	of the data must be 0.02 ~ 0.025 mg/L.	
Response	Chl-a phytoplankton	The 50 th percentile of	of the data must be 12 – 15 μg/L	
variables	Chl-a periphyton	The 50 th percentile of the data must be 10 – 12 mg/m ² .		
Toxics		The 95 th percentile of (TWQR) as stated in	of the data must be within the Target Water Quality Range DWAF (1996).	

^{*} To be generated using TEACHA when the TPC for EC is exceeded or salt pollution expected.

Table 5.53: PES categories and overall site assessment for the Gouna River at WQSU 2

RIVER	Gou	na River	WATER Q	UALITY MON	NITORING POINTS
wqsu	WQ	SU 2	Gouna R. @ Gouna Comm K5H001Q01 ('77 – '80; n =		
EWR SITE	2		PES	K5H001Q01	1 ('81 – '84; n = 30)
Confidence assessmer		Low confidence due	to limited dat	a, particularly	for present state
Water Qual	ity Consti	tuents	RC Value	PES Value	Category/Comment
	MgSO ₄		14.45	23.19	
	Na ₂ SO ₄		3.78	0.30	
Inorganic salts	MgCl ₂		10.75	12.11	TEACHA was used for data
saits (mg/L)	CaCl ₂		10.59	9.35	assessment. Slight elevation in salts seen, i.e. an A/B category
,	NaCl		95.29*	102.20]
	CaSO ₄		0.54	0.72	
Nutrients	SRP		0.009*	0.011	A category.
(mg/L)	TIN		0.070	0.120	A category.
	pH (5 th + 95 th %ile) Temperature		4.0 + 6.8	4.0 + 5.6	A category as little change from natural.
			-	-	No data but no impacts expected.
Physical	Dissolve	ed oxygen	-	-	
Variables	Turbidity	(NTU)	-	-	No data. Sedimentation seen in lowe section of the WQSU, i.e. below the pump station.
	Electrica	al conductivity (mS/m)		15.0	A category.
	Chl a: pe	eriphyton	-	43.70	Nutrient elevations indicated by
	Chl a: pł	nytoplankton	-	0.09	periphyton value (D category; n=1).
Response variables			ASPT: 6.9 – 7.6	ASPT: 7.6 MIRAI: 92.8%	A category for the present state.
			-	FRAI: 93.8%	A category for the present state.
	Diatoms		-	SPI=19.8	High quality water.
Toxics			-	-	No data but no toxics expected.
OVERALL S	SITE CLAS	SSIFICATION		U 2, although station (PAI	an A category for river stretch upstream

Table 5.54: Water quality EcoSpecs for Gouna River at WQSU 2

River: Gouna Water quality metrics		EWR: 2	Monitoring site: K5H001Q01			
		ECOSPEC				
MgSO ₄		The 95 th percentile of the data must be ≤ 23 mg/L.				
	Na ₂ SO ₄	The 95th percentile of	f the data must be ≤ 20 mg/L.			
Increasio celte*	MgCl ₂	The 95th percentile of	f the data must be ≤ 15 mg/L.			
Inorganic salts*	CaCl ₂	The 95th percentile of	f the data must be ≤ 21 mg/L.			
	NaCl	The 95 th percentile o	The 95 th percentile of the data must be ≤ 191 mg/L.			
	CaSO ₄	The 95 th percentile of the data must be ≤ 351 mg/L.				
	EC	The 95 th percentile of the data must be ≤ 43 mS/m.				
	рН	The 5 th and 95 th percentiles of the data must range from 4.5 to 7.5.				
Physical variables	Temperature	Largely natural to small deviation from the natural temperature range.				
. Hydraal Tallabioo	Dissolved oxygen	The 5 th percentile of the data must be ≥ 7.5 mg/L.				
	Turbidity	Vary by a small amount from the natural turbidity range; minor silting of inst habitats acceptable.				
Nutrients	TIN	The 50th percentile of	the data must be ≤ 0.15 mg/L.			
Numents	PO ₄ -P	The 50th percentile of	the data must be ≤0.025 mg/L.			
Response	Chl-a phytoplankton	The 50 th percentile of	the data must be <15 μg/L.			
variables	Chl-a periphyton	The 50 th percentile of the data must be ≤ 84 mg/m ² .				
Toxics		The 95th percentile of the data must be within the Target Water Quality Range (TWQR) as stated in DWAF (1996).				

^{*} To be generated using TEACHA when the TPC for EC is exceeded or salt pollution expected.

Table 5.55: Water quality TPC's for Gouna River at WQSU 2

River: Gouna Water quality metrics		EWR: 2	Monitoring site: K5H001Q01		
		TPC			
	MgSO ₄	The 95 th percentile of	f the data must be 18 – 23 mg/L.		
	Na ₂ SO ₄	The 95th percentile of	f the data must be 16 – 20 mg/L.		
 	MgCl ₂	The 95th percentile of	f the data must be 12 – 15 mg/L.		
Inorganic salts*	CaCl ₂	The 95 th percentile o	f the data must be 17 – 21 mg/L.		
	NaCl	The 95 th percentile o	f the data must be 36 – 45 mg/L.		
	CaSO ₄	The 95th percentile of the data must be 153 – 191 mg/L.			
	EC	The 95th percentile o	f the data must be 35 – 43 mS/m.		
	pН	The 5 th and 95 th perc	entiles of the data must be <4.7 and >7.3.		
Physical variables	Temperature	Small to moderate de temperature sensitive than expected for ref	eviation from the natural temperature range. Some highly e species in lower abundances and frequency of occurrence erence.		
	Dissolved oxygen	The 5 th percentile of	the data must be 7.8 – 7.5 mg/L.		
	Turbidity	Moderate changes to high sediment loads	the catchment land-use resulting in temporary unnaturally and high turbidities.		
Nutrients	TIN	The 50th percentile of	f the data must be 0.2 – 0.25 mg/L.		
Nutrients	PO ₄ -P	The 50th percentile of the data must be 0.012 – 0.015 mg/L.			
Response variables	Chl-a phytoplankton	The 50 th percentile o	f the data must be 12 – 15 μg/L.		
variables	Chl-a periphyton	The 50th percentile of the data must be 67 – 84 mg/m².			
Toxics		The 95 th percentile of (TWQR) as stated in	f the data must be within the Target Water Quality Range DWAF (1996).		

6. GROUNDWATER - QUANTITY COMPONENT

The groundwater quantity component was determined using values (recharge and groundwater baseflow) obtained during the determination of water resource classes and associated resource quality objectives in the Breede-Gouritz WMA, (DWS 2017), shown in Table 6.1.

Population values were obtained from the Water Services dataset of 2011 for the Breede catchment and from the Gouritz Catchment Intermediate Reserve study for the Gouritz catchment. The Basic Human Needs Reserve provides for the essential needs of individuals served by the water resource in question and includes water for drinking, food preparation and for personal hygiene. A life-line amount of 25 litres per person per day was used.

Table 6.1: Breede-Gouritz Groundwater Reserve

Quaternary Catchment	Recharge (Mm³/a)	Population	Basic Human Needs (Mm³/a)	Groundwater Baseflow (Mm³/a)	Reserve (Mm3/a)	Reserve as % of Recharge
G40A	13.06	15963	0.15	3.17	3.32	25.39
G40B	19.19	4612	0.04	5.33	5.37	27.99
G40C	45.16	38379	0.35	6.25	6.60	14.62
G40D	59.72	15963	0.15	14.45	14.60	24.44
G40E	13.19	7670	0.07	4.41	4.48	33.97
G40F	11.28	28422	0.26	2.12	2.38	21.09
G40G	16.02	17112	0.16	3.72	3.88	24.20
G40H	6.53	32767	0.30	1.58	1.88	28.77
G40J	6.92	1574	0.01	2.53	2.54	36.77
G40K	9.13	15963	0.15	4.67	4.82	52.75
G40L	13.96	15963	0.15	1.63	1.78	12.72
G40M	10.57	355	0.003	5.17	5.17	48.94
G50A	7.37	1370	0.01	2.61	2.62	35.58
G50B	6.59	1507	0.01	3.47	3.48	52.86
G50C	8.56	1748	0.02	2.05	2.07	24.13
G50D	5.39	9430	0.09	2.55	2.64	48.91
G50E	4.92	14355	0.13	1.37	1.50	30.51
G50F	6.64	1989	0.02	1.27	1.29	19.40
G50G	2.40	844	0.01	1.43	1.44	59.90
G50H	5.75	736	0.01	3.28	3.29	57.16
G50J	6.07	3325	0.03	1.90	1.93	31.80
G50K	2.72	1748	0.02	0.76	0.78	28.53
H10A	13.15	12494	0.11	0.76	0.87	6.65
H10B	12.20	12494	0.11	0.48	0.59	4.87
H10C	21.28	57300	0.52	2.00	2.52	11.86
H10D	14.89	12494	0.11	2.05	2.16	14.53
H10E	20.35	12494	0.11	3.20	3.31	16.29
H10F	25.24	20720	0.19	1.39	1.58	6.26
H10G	31.82	12494	0.11	0.44	0.55	1.74
H10H	28.48	12494	0.11	2.80	2.91	10.23
H10J	61.45	1035	0.01	7.94	7.95	12.94
H10K	43.17	12494	0.11	7.40	7.51	17.41
H10L	2.76	4268	0.04	0.00	0.04	1.41

Quaternary Catchment	Recharge (Mm³/a)	Population	Basic Human Needs (Mm³/a)	Groundwater Baseflow (Mm³/a)	Reserve (Mm3/a)	Reserve as % of Recharge
H20A	2.42	427	0.00	0.47	0.47	19.58
H20B	5.37	17136	0.16	0.17	0.33	6.08
H20C	2.84	1266	0.01	0.05	0.06	2.17
H20D	8.74	1266	0.01	2.11	2.12	24.27
H20E	14.68	1266	0.01	2.01	2.02	13.77
H20F	8.65	875	0.01	0.32	0.33	3.79
H20G	4.83	1266	0.01	0.47	0.48	9.97
H20H	1.56	140420	1.28	0.07	1.35	86.62
H30A	5.17	1102	0.01	0.33	0.34	6.58
H30B	6.04	39573	0.36	0.16	0.52	8.63
H30C	10.59	1317	0.01	0.07	0.08	0.77
H30D	3.18	926	0.01	0.06	0.07	2.15
H30E	2.95	9784	0.09	0.31	0.40	13.53
H40A	3.74	2233	0.02	0.87	0.89	23.81
H40B	12.26	2152	0.02	0.87	0.89	7.26
H40C	4.90	2233	0.02	0.86	0.88	17.97
H40D	4.18	2233	0.02	1.85	1.87	44.75
H40E	10.91	2233	0.02	0.20	0.22	2.02
H40F	1.07	1798	0.02	0.58	0.60	55.74
H40G	3.22	2233	0.02	0.23	0.25	7.78
H40H	4.71	1217	0.01	0.13	0.14	3.00
H40J	4.44	26455	0.24	0.18	0.42	9.49
H40K	2.99	3916	0.04	0.24	0.28	9.22
H40L	2.47	2290	0.02	0.42	0.44	17.85
H50A	1.42	3842	0.04	0.26	0.30	20.78
H50B	5.04	5825	0.05	0.78	0.83	16.53
H60A	30.87	10083	0.09	2.49	2.58	8.36
H60B	42.43	7900	0.0720875	7.28	7.35	17.33
H60C	30.89	15284	0.14	1.64	1.78	5.76
H60D	14.76	511	0.00	0.95	0.95	6.47
H60E	9.73	10305	0.09	0.71	0.80	8.26
H60F	7.65	3321	0.03	0.66	0.69	9.02
H60G	4.11	10083	0.09	0.64	0.73	17.81
H60H	7.49	10083	0.09	1.14	1.23	16.45
H60J	8.17	10083	0.09	1.31	1.40	17.16
H60K	3.59	10083	0.09	1.04	1.13	31.53
H60L	2.88	10083	0.09	0.87	0.96	33.40
H70A	5.55	4786	0.04	1.47	1.51	27.27
H70B	22.83	19350	0.18	4.17	4.35	19.04
H70C	3.99	4915	0.04	0.23	0.27	6.89
H70D	20.70	4786	0.04	5.53	5.57	26.93
H70E	26.55	6729	0.06	5.16	5.22	19.67
H70F	15.50	2721	0.02	2.31	2.33	15.06

Quaternary Catchment	Recharge (Mm³/a)	Population	Basic Human Needs (Mm³/a)	Groundwater Baseflow (Mm³/a)	Reserve (Mm3/a)	Reserve as % of Recharge
H70G	3.92	4786	0.04	1.26	1.30	33.26
H70H	2.80	746	0.01	1.89	1.90	67.74
H70J	3.95	4786	0.04	1.43	1.47	37.31
H70K	3.03	772	0.01	1.21	1.22	40.17
H80A	16.34	0	0.00	7.21	7.21	44.12
H80B	24.01	0	0.00	6.45	6.45	26.86
H80C	5.75	10 110	0.09	0.61	0.70	12.21
H80D	2.57	0	0.00	1.23	1.23	47.86
H80E	7.66	392	0.00	2.11	2.11	27.59
H80F	5.96	585	0.01	2.72	2.73	45.73
H90A	19.62	0	0.00	9.04	9.04	46.08
H90B	12.96	0	0.00	6.02	6.02	46.45
H90C	5.51	18 526	0.17	1.93	2.10	38.10
H90D	10.38	1 697	0.02	3.29	3.31	31.84
H90E	9.70	6 253	0.06	4.88	4.94	50.90
J11A	2.98	0	0.00	0.00	0.00	0.00
J11B	3.11	0	0.00	0.00	0.00	0.00
J11C	0.22	192	0.00	0.00	0.00	0.80
J11D	3.74	48	0.00	0.00	0.00	0.01
J11E	1.40	4 773	0.04	0.00	0.04	3.11
J11F	0.43	734	0.01	0.00	0.01	1.56
J11G	0.12	84	0.00	0.00	0.00	0.64
J11H	4.01	885	0.01	0.00	0.01	0.20
J11J	6.02	1 333	0.01	0.00	0.01	0.20
J11K	2.52	11 732	0.11	0.00	0.11	4.25
J12A	3.15	0	0.00	0.02	0.02	0.63
J12B	1.55	7 857	0.07	0.00	0.07	4.63
J12C	1.59	152	0.00	0.01	0.01	0.72
J12D	6.32	535	0.00	0.02	0.02	0.39
J12E	1.93	507	0.00	0.02	0.02	1.28
J12F	6.15	336	0.00	0.03	0.03	0.54
J12G	5.66	294	0.00	0.01	0.01	0.22
J12H	4.53	0	0.00	0.02	0.02	0.44
J12J	4.59	0	0.00	0.01	0.01	0.22
J12K	2.44	0	0.00	0.01	0.01	0.41
J12L	6.59	681	0.01	0.05	0.06	0.85
J12M	3.04	0	0.00	0.06	0.06	1.97
J13A	4.10	0	0.00	0.02	0.02	0.49
J13B	2.86	660	0.01	0.03	0.04	1.26
J13C	2.91	0	0.00	0.03	0.03	1.03
J21A	4.28	34 661	0.32	0.00	0.32	7.39
J21B	0.56	389	0.00	0.00	0.00	0.63
J21C	0.12	406	0.00	0.00	0.00	3.09

Quaternary Catchment	Recharge (Mm³/a)	Population	Basic Human Needs (Mm³/a)	Groundwater Baseflow (Mm³/a)	Reserve (Mm3/a)	Reserve as % of Recharge
J21D	0.24	0	0.00	0.00	0.00	0.00
J21E	0.26	0	0.00	0.00	0.00	0.00
J22A	3.04	0	0.00	0.00	0.00	0.00
J22B	1.12	0	0.00	0.00	0.00	0.00
J22C	1.27	241	0.00	0.00	0.00	0.17
J22D	1.22	133	0.00	0.00	0.00	0.10
J22E	1.31	0	0.00	0.00	0.00	0.00
J22F	0.12	1 237	0.01	0.00	0.01	9.41
J22G	2.92	0	0.00	0.00	0.00	0.00
J22H	4.19	919	0.01	0.00	0.01	0.20
J22J	0.90	0	0.00	0.00	0.00	0.00
J22K	0.35	0	0.00	0.00	0.00	0.00
J23A	0.28	2 080	0.02	0.00	0.02	6.78
J23B	0.50	47	0.00	0.00	0.00	0.09
J23C	0.25	12	0.00	0.00	0.00	0.04
J23D	0.70	12	0.00	0.00	0.00	0.02
J23E	2.03	674	0.01	0.18	0.19	9.17
J23F	1.33	6 901	0.06	0.00	0.06	4.73
J23G	0.00	0	0.00	0.00	0.00	0.00
J23H	1.11	0	0.00	0.00	0.00	0.00
J23J	1.82	0	0.00	0.97	0.97	53.30
J24A	2.58	193	0.00	0.00	0.00	0.07
J24B	0.51	1 521	0.01	0.00	0.01	2.72
J24C	0.21	0	0.00	0.00	0.00	0.00
J24D	0.08	314	0.00	0.00	0.00	3.58
J24E	0.39	0	0.00	0.00	0.00	0.00
J24F	1.37	0	0.00	0.00	0.00	0.00
J25A	2.42	200	0.00	1.02	1.02	42.22
J25B	4.45	4 135	0.04	1.23	1.27	28.49
J25C	1.04	1 342	0.01	0.02	0.03	3.10
J25D	2.94	5 170	0.05	0.61	0.66	22.35
J25E	1.12	402	0.00	0.04	0.04	3.90
J31A	7.88	0	0.00	1.13	1.13	14.34
J31B	1.57	0	0.00	0.48	0.48	30.57
J31C	1.87	0	0.00	0.35	0.35	18.72
J31D	2.07	266	0.00	0.38	0.38	18.47
J32A	0.08	50	0.00	0.00	0.00	0.57
J32B	0.01	881	0.01	0.00	0.01	80.39
J32C	0.01	77	0.00	0.00	0.00	7.03
J32D	0.00	0	0.00	0.00	0.00	0.00
J32E	1.76	719	0.01	0.00	0.01	0.37
J33A	4.81	130	0.00	1.44	1.44	29.96
J33B	8.98	680	0.01	1.47	1.48	16.44

Quaternary Catchment	Recharge (Mm³/a)	Population	Basic Human Needs (Mm³/a)	Groundwater Baseflow (Mm³/a)	Reserve (Mm3/a)	Reserve as % of Recharge
J33C	2.83	76	0.00	0.01	0.01	0.38
J33D	3.82	255	0.00	1.24	1.24	32.52
J33E	8.22	13 522	0.12	1.98	2.10	25.59
J33F	4.50	34 154	0.31	2.19	2.50	55.59
J34A	3.08	7 465	0.07	1.48	1.55	50.26
J34B	6.44	1 850	0.02	2.85	2.87	44.52
J34C	9.60	669	0.01	3.51	3.52	36.63
J34D	4.06	1 915	0.02	1.80	1.82	44.77
J34E	2.29	1 321	0.01	1.13	1.14	49.87
J34F	3.44	2 928	0.03	0.47	0.50	14.44
J35A	8.47	31 018	0.28	1.20	1.48	17.51
J35B	8.12	5 831	0.05	1.24	1.29	15.93
J35C	1.98	3 633	0.03	0.88	0.91	46.12
J35D	9.82	5 284	0.05	3.65	3.70	37.66
J35E	1.33	1 224	0.01	0.21	0.22	16.63
J35F	6.67	2 796	0.03	2.02	2.05	30.67
J40A	9.73	970	0.01	5.03	5.04	51.79
J40B	5.45	0	0.00	2.71	2.71	49.72
J40C	15.81	1 076	0.01	6.58	6.59	41.68
J40D	10.21	8 056	0.07	4.20	4.27	41.86
J40E	7.48	1 908	0.02	3.45	3.47	46.36
K10A	2.34	53 970	0.49	1.16	1.65	70.62
K10B	1.96	4 727	0.04	1.20	1.24	63.43
K10C	4.43	0	0.00	2.33	2.33	52.60
K10D	2.53	1 579	0.01	1.10	1.11	44.05
K10E	13.70	4 122	0.04	4.30	4.34	31.66
K10F	2.82	7 002	0.06	0.99	1.05	37.37
K20A	19.85	9 650	0.09	6.15	6.24	31.43
K30A	28.06	6 994	0.06	7.15	7.21	25.71
K30B	21.52	6 334	0.06	5.03	5.09	23.64
K30C	27.80	146 970	1.34	7.83	9.17	32.99
K30D	18.44	9 839	0.09	7.43	7.52	40.78
K40A	8.99	512	0.00	3.79	3.79	42.21
K40B	13.52	0	0.00	4.85	4.85	35.87
K40C	17.00	6 256	0.06	4.32	4.38	25.75
K40D	17.74	20 130	0.18	3.71	3.89	21.95
K40E	26.56	13 515	0.12	10.61	10.73	40.41
K50A	27.43	49	0.00	10.09	10.09	36.79
K50B	24.71	14 745	0.13	8.58	8.71	35.27
K60A	6.43	154	0.00	4.20	4.20	65.34
K60B	8.43	43	0.00	5.70	5.70	67.62
K60C	10.95	1 668	0.02	6.60	6.62	60.41
K60D	23.54	681	0.01	12.43	12.44	52.83

Quaternary Catchment	Recharge (Mm³/a)	Population	Basic Human Needs (Mm³/a)	Groundwater Baseflow (Mm³/a)	Reserve (Mm3/a)	Reserve as % of Recharge
K60E	6.39	2 392	0.02	3.95	3.97	62.16
K60F	14.35	10 113	0.09	9.35	9.44	65.80
K60G	11.31	23 053	0.21	5.02	5.23	46.25
K70A	14.30	5 364	0.05	6.84	6.89	48.17
K70B	20.46	852	0.01	4.46	4.47	21.84

PROPOSED GROUNDWATER RESERVE - WATER QUALITY COMPONENT

The groundwater quality of quaternary catchments with available hydrochemistry data was assessed against the domestic water target water quality ranges as shown in Table 6.2. A summary of the results for the groundwater quality classification at quaternary level in the terms of basic human needs requirements is included in the tables that follow.

Table 6.2: Physical and chemical water quality

Parameter	Target Water Quality Ranges 1)								
	Units	Class 0	Class I	Class II	Class III <4 & > 10				
pН	pH units	6-9	5-6&9-9.5	4-5 & > 9.5 - 10					
Electrical Conductivity	mS/m	< 70	70 - 150	150 – 370	> 370				
Calcium as Ca	mg/l	< 80	80 - 150	150 – 300	> 300				
Magnesium as Mg	mg/l	< 70	70 - 100	100 – 200	> 200				
Sodium as Na	mg/l	< 100	100 - 200	200 – 400	> 400				
Chloride as Cl	mg/l	< 100	100 - 200	200 – 600	> 600				
Sulphate as SO ₄	mg/l	< 200	200 - 400	400 – 600	> 600				
Nitrate as NO _x -N	mg/l	< 6	6 - 10	10 – 20	> 20				
Fluoride as F	mg/l	<0.7	0.7 - 1.0	1.0 – 1.5	> 1.5				

¹⁾ Reference: Classification Systems in terms of – Water Research Commission: Quality of Domestic Water Supplies – Volume 1. Report No. TT 101/98, Second Edition, 1998.

The water quality for the following quaternary catchments were not assessed due to insufficient information (lack of representative groundwater quality data):

- G40B; G40D; G40E; G40G; G40K
- G50A; G50B; G50C; G50D; G50G; G50J
- H10D; H10E; H10J; H10K
- H20C; H20G; H20H
- H30B; H30E
- H40C; H40D; H40E; H40G; H40J; H40K; H40L
- H50A; H50B
- H60A; H60B; H60C; H60D; H60E; H60F; H60G; H60H; H60J; H60K; H60L
- H70A; H70C; H70D; H70E; H70F; H70G; H70H; H70J
- J11A; J11C; J11D; J11F; J11H; J11J; J11K
- J12A; J12C; J12E; J12J; J12M
- J13A; J13C, J22A; J22G; J22K, J23B; J23E; J23J, J24, J25B; J25D; J25E
- J31A; J31B; J31C, J32D, J33A; J33B; J33C, J34C; J34E, J35C; J35E; J35F
- J40A; J40B; J40C
- K10C; K10E; K10F
- K20A
- K30A; K30C; K30D
- K40A; K40B; K40C; K40D; K40E
- K50A
- K60A; K60B; K60C; K60D; K60E; K60F; K60G
- K70A; K70B

Management Area
Gouritz Water
Reserve: Breede
r Quality
. Groundwate
Table 6.3.

ity ity	i i		No of Samples	mulae		-	" LI 4 CVM							
	•		10 IV	nii pico		ď	Ambient GW quality or median	tality or med	lan 1	2		Groundwater (Groundwater Quality Reserve3	3)
	פ	G40C	G40F	G40J	G40L	G40C	G40F	G40J	G40L	DUN Keserve-	G40C	G40F	G40J	G40L
		39	9	45	43	7.09	7.26	7.01	8.16	5.0 – 9.5	6.38-7.80	6.53-7.99	6.31-7.71	7.34-8.97
	mS/m	39	61	45	43	20.70	20.90	21.20	208.00	<150	22.77	22.99	23.32	228.80
	mg/l	36	22	42	40	7.94	79.7	7.68	105.32	<150	8.73	8.43	8.45	115.85
	mg/l	36	22	42	40	3.30	3.30	3.40	33.40	<100	3.63	3.63	3.74	36.74
	mg/l	36	22	42	38	18.08	18.40	18.32	253.05	<200	19.89	20.24	20.16	253.05
	mg/l	36	28	42	40	31.94	32.69	32.57	391.39	<200	35.13	35.96	35.83	391.39
		36	28	42	40	5.71	5.35	5.81	78.14	<400	6.28	5.89	6.39	85.95
Nitrate as NO _x -N mo	l/gm	36	22	42	88	0.04	0.05	90.0	5.17	<10	0.04	90:0	0.07	5.68
Fluoride as F mç	mg/l	36	25	42	32	0:30	0.31	0.29	0.28	4.0	0.33	0.34	0.32	0.34
							Quaterna	ıry Catchme	Quaternary Catchments G40M, G50E, G50F, G50H	G50F, G50H				
Chemical Parameter Ur	Unit		No. of Samples	mples		Ā	Ambient GW quality or median1)	ality or med	ian1)			Groundwater C	Groundwater Quality Reserve3)	3)
	Ö	G40M	G50E	G50F	G50H	G40M	G50E	G50F	G50H	BHN Reserve ²⁾	G40M	G50F	GSOF	GSOH
Hd		37	49	45	23	8.17	6.21	8.17	8.02	5.0 – 9.5	7.35-8.99	5.59-6.83	7.35-8.99	7.22-8.82
Electrical Conductivity mS/m		37	49	45	23	109.10	54.90	91.90	1630.00	<150	120.01	60.39	101.09	1630.00
Calcium as Ca mg/l		37	44	42	23	88.34	4.37	84.20	182.00	<150	97.18	4.81	92.62	182.00
Magnesium as Mg mg/l		37	44	42	23	15.03	8.91	12.37	358.00	<100	16.54	9.81	13.61	358.00
Sodium as Na mg/l		37	42	40	23	113.15	80.39	85.23	3107.18	<200	124.47	88.43	93.76	3107.18
Chloride as Cl mg/l		37	44	42	23	203.98	143.85	153.44	5302.10	<200	203.98	158.24	168.79	5302.10
Sulphate as SO ₄ mg/l		37	44	41	23	31.52	20.58	25.59	742.40	<400	34.67	22.64	28.15	742.40
Nitrate as NO _x -N mg/l		37	43	40	23	1.70	90:0	0.26	0.13	<10 <10	1.87	0.07	0.29	0.14
Fluoride as F mg/l		37	40	39	23	0.18	0.11	0.22	1.35	<1.0	0.20	0.12	0.25	1.49
							Quaterna	ary Catchme	Quaternary Catchments G50J, H10A, H10B, H10C	H10B, H10C				
Chemical Parameter Unit	_		No. of Samples	mples			Ambient GW quality or median1)	lality or med	lan1)	DUN Been		Groundwater C	Groundwater Quality Reserve3	3
	G	6500	H10A	H10B	H00	G50J	H10A	H10B	H10C	DIIN Reserve-	G207	H10A	H10B	H10C
Hd		6	34	73	09	7.58	69.2	7.88	7.33	5.0 - 9.5	6.82-8.34	6.92-8.46	7.09-8.67	90.8-09.9
Electrical Conductivity mS/m	m/	တ	34	73	09	142.90	180.00	49.00	45.60	<150	157.19	180.00	53.90	50.16
Calcium as Ca mg/l	l/t	6	34	70	09	92.00	65.00	46.98	20.35	<150	101.20	71.50	51.67	22.39
Magnesium as Mg mg/l	l/t	6	82	20	09	23.40	54.25	6.72	12.85	<100	25.74	59.68	7.39	14.14
Sodium as Na mg/l	l/t	6	34	89	09	194.60	219.35	36.21	49.80	<200	200.00	241.29	39.83	54.78
	1/4	6	34	02	09	338.90	380.55	80.09	106.25	<200	338.90	418.61	88.10	116.88
Sulphate as SO ₄ mg/l	l/t	6	84	20	09	38.70	153.60	21.75	22.30	<400	42.57	168.96	23.92	24.53
Nitrate as NO _x -N mg/l	Į/t	6	8	20	09	1.04	0.42	0.17	0.44	40	1.14	0.46	0.19	0.48
Fluoride as F mg/l	<u></u>	6	34	89	09	0.16	0.34	0.18	0.17	<1.0	0.18	0.37	0.20	0.19

H10G H10H H10L H10F H10G H10H	onemical Parameter	TIUD TIUD		No. of	No. of Samples		A	Ambient GW quality or median1)	ality or med	nt GW quality or median ¹⁾			Groundwater	Groundwater Quality Reserve	p.3)
Majeria 15 117 54 82 729 705 729 639 639 50-95 638-776 638-7			H10F	H10G	H10H	H10L	H10F	H10G	H10H	H10L	DHN Keserve	H10F	H10G	H10H	
Might 15 117 54 82 24.70 13.40 11770 987 < < d>450 27.17 14.74 128.47 128.47 13.84 13.85 13.8	Hd		15	117	24	82	7.29	7.05	7.59	6.98	5.0 - 9.5	6.56-8.02	6.35-7.76	6.83-8.35	6.28-7.68
mg/l 15 112 52 78 610 749 2850 370 <150 6171 624 3135	lectrical Conductivity	mS/m	13	117	54	82	24.70	13.40	117.70	9.87	<150	27.17	14.74	129.47	10.85
mg/l 15 112 53 78 12.00 28.0 21.0	Calcium as Ca	l/gm	15	111	23	78	6.10	7.49	28.50	3.70	<150	6.71	8.24	31.35	4.07
mg/l 12 107 52 76 1885 12.10 776.10 860 <200 23.55 23.03 388.75 1837 1	Magnesium as Mg	l/gm	15	112	53	78	12.00	2.80	28.30	2.12	<100	13.20	3.08	31.13	2.34
mg/l 15 114 54 79 3050 1846 386,75 1480 <200 3156 20.30 308,75 308,75 300 308,75 300 308,75 300,75 308,75 300,75	Sodium as Na	l/gm	12	107	52	9/	18.85	12.10	176.10	8.60	<200	20.74	13.31	193.71	9.46
Majer 12 109 52 79 415 550 5305 3.00 4.00 4.57 6.05 6.05 5.00 5.00 Majer 15 110 54 78 0.05 0.05 0.05 0.05 0.05 0.07 0.02 0.00 Majer 15 110 54 78 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 Majer 15 110 54 78 0.05 0.05 0.05 0.05 0.05 0.05 0.05 Majer 15 100 1.0	Chloride as Cl	l/gm	15	114	54	79	30.50	18.45	308.75	14.80	<200	33.55	20.30	308.75	16.28
Mile 15 112 54 75 0.05 0.05 0.05 0.10 0.01 0.01 0.01 0.02 0.03 0.05 0.03	Suiphate as SO ₄	l/gm	12	109	52	79	4.15	5.50	53.65	3.00	<400	4.57	6.05	59.02	3.30
Mile	Nitrate as NO _x -N	l/gm	15	112	54	78	90.0	0.25	0.03	0.18	<10	0.07	0.28	0.03	0.20
Mile High	Fluoride as F	l/gm	15	110	54	75	0.31	0.16	0.57	0.12	<1.0	0.34	0.17	0.62	0.13
Unif H20A H20B H20B <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Quaterna</td><td>iry Catchmer</td><td>Its H20A, H20B</td><td>, H20D, H20E</td><td></td><td></td><td></td><td></td></t<>								Quaterna	iry Catchmer	Its H20A, H20B	, H20D, H20E				
MiShim M	Shemical Parameter	Chrit		No. of §	Samples		A	mbient GW qu	ality or med	an1)	C MILE		Groundwater (Quality Reserv	(£43)
Majeria Maje			H20A	H20B	H20D	H20E		H20B	H20D		BHN Keserve	H20A	H20B	H20D	
Mily	PH		82	344	12	15	7.20	7.09	6.77	6.46	5.0 - 9.5	6.48-7.92	6.38-7.79	6.09-7.44	5.81-7.11
mg/l 85 344 12 15 5.60 9.15 0.50 0.50 0.50 0.50 0.50 0.1057 mg/l 85 344 12 15 5.60 9.15 0.150 0.50 0.50 0.50 0.50 0.1057 mg/l 85 344 12 15 5.60 9.15 0.250 0.33 0.35 0.250 0.50 0.202	lectrical Conductivity	mS/m	85	344	12	15	50.60	40.75	12.75	2.30	<150	55.66	44.83	14.03	2.53
mg/l 85 344 12 15 560 9.15 2.15 0.60 <100 6.16 1007 2.37 mg/l 85 344 11 15 25.70 31.80 7.70 260 <200	Calcium as Ca	l/gm	82	344	12	15	34.80	23.45	9.70	0.50	<150	38.28	25.80	10.67	0.55
mg/l 85 344 11 15 25.70 31.80 7.70 260 <200 28.27 34.98 84.7 mg/l 85 344 12 15 55.00 56.55 13.90 1.50 <200	Magnesium as Mg	l/gm	82	344	12	15	5.60	9.15	2.15	0.50	<100	6.16	10.07	2.37	0.55
mg/l 85 344 12 45 55.00 50.56 13.90 1.50 <200 <60.50 56.61 15.29 440 mg/l 85 344 11 15 81.20 39.65 4.00 2.00 <400	Sodium as Na	l/gm	82	344	7	15	25.70	31.80	7.70	2.60	<200	28.27	34.98	8.47	2.86
Mile	Chloride as Cl	l/gm	82	344	12	15	25.00	50.55	13.90	1.50	<200	60.50	55.61	15.29	1.65
May 85 344 12 15 0.05 0.90 0.33 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0	Sulphate as SO ₄	l/gm	82	344	11	15	81.20	39.65	4.00	2.00	<400	89.32	43.62	4.40	2.20
Unit No. of Samples Monocolor Samples	Nitrate as NO _x -N	∥/gш	82	344	12	15	0.05	06'0	0.33	0.05	<10	90.0	66:0	0.36	90:0
Unit No. of Samples Ambient GW quality or median¹ H30C H30C <td>Fluoride as F</td> <td>mg/l</td> <td>82</td> <td>344</td> <td>12</td> <td>15</td> <td>0.11</td> <td>0.13</td> <td>0.05</td> <td>90.0</td> <td><1.0</td> <td>0.12</td> <td>0.14</td> <td>90.0</td> <td>90.0</td>	Fluoride as F	mg/l	82	344	12	15	0.11	0.13	0.05	90.0	<1.0	0.12	0.14	90.0	90.0
Modern of Samples Ambient GW quality or median 1 Ambient GW quality GW quality or median 1 Ambient GW quality GW quality GW quality or median 1 Ambient GW quality GW qual	hominal Daramotor	100						Quaterna	ry Catchmer	its H20F, H30A	, H30C, H30D				
H20F H30A H30F H30F H30A H30A H30B H30B <th< td=""><td>ileliiicai raiailietei</td><td>5</td><td></td><td>No. of §</td><td>Samples</td><td></td><td>A</td><td>mbient GW qu</td><td>ality or med</td><td>an¹⁾</td><td>Othi Day</td><td></td><td>Groundwater (</td><td>Quality Reserv</td><td>(2)</td></th<>	ileliiicai raiailietei	5		No. of §	Samples		A	mbient GW qu	ality or med	an ¹⁾	Othi Day		Groundwater (Quality Reserv	(2)
mS/m 302 9 21 45 7.10 7.56 7.70 7.81 5.0-9.5 6.39-7.80 7.16-8.75 6.93-8.47 mg/l 302 9 21 45 29.00 142.00 41.70 19.50 <150 31.90 156.20 45.87 6.04 mg/l 302 9 21 42 22.80 63.80 36.40 17.10 <150 25.08 70.18 40.04 mg/l 302 9 21 42 4.70 32.50 6.00 3.31 <100 5.77 35.75 6.60 mg/l 302 9 21 40 24.90 191.90 37.00 10.94 <200 27.39 20.00 40.70 mg/l 302 9 21 43 28.00 121.90 48.00 4.30 <400 30.80 134.09 52.80 mg/l 302 9 14 42 0.11 0.02 0.13 <th< td=""><td></td><td></td><td>H20F</td><td>H30A</td><td>H30C</td><td>H30D</td><td></td><td>H30A</td><td>H30C</td><td></td><td>DIIN Keserve-</td><td></td><td>H30A</td><td>H30C</td><td></td></th<>			H20F	H30A	H30C	H30D		H30A	H30C		DIIN Keserve-		H30A	H30C	
mS/m 302 9 21 45 29.00 41.70 19.50 <150 31.90 156.20 45.87 45.87 mg/l 302 9 21 42 22.80 63.80 36.40 17.10 <150	Hd		302	6	21	45	7.10	7.95	7.70	7.81	5.0 – 9.5	6.39-7.80	7.16-8.75	6.93-8.47	7.03-8.59
mg/l 302 9 21 42 22.80 63.80 36.40 17.10 <150 25.08 70.18 40.04 mg/l 302 9 21 42 4.70 32.50 6.00 3.31 <100	lectrical Conductivity	mS/m	302	6	21	45	29.00	142.00	41.70	19.50	<150	31.90	156.20	45.87	21.45
mg/l 302 9 21 42 4.70 32.50 6.00 3.31 <10 5.17 35.75 6.60 mg/l 302 9 21 40 24.90 191.90 37.00 10.94 <200 27.39 200.00 40.70 mg/l 302 9 21 43 28.30 273.50 82.00 18.08 <200 31.13 300.85 90.20 mg/l 302 9 21 43 28.00 121.90 48.00 4.30 <400 30.80 134.09 52.80 mg/l 302 9 16 42 0.11 0.02 0.13 <10 0.12 0.02 0.13 <10 0.11 0.02 0.02 0.13 <10 0.11 0.05 0.16 <1.0 0.11 0.16 0.11 0.16 0.11 0.12 0.11 0.11 0.11 0.11 0.11 0.12 0.12 0.12 0.12 0.12<	Calcium as Ca	mg/l	302	6	21	42	22.80	63.80	36.40	17.10	<150	25.08	70.18	40.04	18.81
mg/l 302 9 21 40 24:90 191:90 37:00 10:94 <200 27:39 200.00 40:70 mg/l 302 9 21 43 28:30 273:50 82:00 18:08 <200	Magnesium as Mg	mg/l	302	6	21	42	4.70	32.50	00.9	3,31	<100	5.17	35.75	09:9	3.64
mg/l 302 9 21 43 28.30 273.50 82.00 18.08 <200 31.13 300.85 90.20 mg/l 302 9 21 43 28.00 121.90 48.00 4.30 <400	Sodium as Na	∥gm	302	တ	21	40	24.90	191.90	37.00	10.94	<200	27.39	200.00	40.70	12.04
mg/l 302 9 21 43 28.00 121.90 48.00 4.30 <400 30.80 134.09 52.80 mg/l 302 9 21 42 0.11 0.02 0.03 0.13 <10	Chloride as Cl	mg/l	302	6	21	43	28.30	273.50	82.00	18.08	<200	31.13	300.85	90.20	19.89
mg/l 302 9 21 42 0.11 0.02 0.03 0.13 <10 0.12 0.02 0.03 0.13 <10 0.02 0.03 0.13 <10 0.11 0.05 0.25	Sulphate as SO ₄	l/gm	302	6	21	43	28.00	121.90	48.00	4.30	<400	30.80	134.09	52.80	4.73
mg/l 302 9 16 40 0.10 0.55 0.23 0.16 <1.0 0.11 0.61 0.25	Nitrate as NO _x -N	∥gm	302	တ	21	42	0.11	0.02	0.02	0.13	<10	0.12	0.02	0.02	0.14
	Fluoride as F	l/gm	302	6	16	40	0.10	0.55	0.23	0.16	<1.0	0.11	0.61	0.25	0.18

pH Electrical Conductivity	9.4													
pH Electrical Conductivity	1		No. of	No. of Samples		-	Ambient GW quality or median ¹⁾	lality or med	ian ¹⁾	OHN December 2		Groundwater	Groundwater Quality Reserve3	(£43)
pH Electrical Conductivity		H40A	H40B	H40F	H70B	H40A	H40B	H40F	H70B	DIIN Keserve-	H40A	H40B	H40F	H70B
Electrical Conductivity		24	14	17	6	7.86	7.35	6.54	8.21	5.0 - 9.5	7.07-8.65	6.62-8.09	5.89-7.19	7.39-9.03
	mS/m	32	14	17	6	112.50	10.88	28.90	925.00	<150	123.75	11.97	31.79	925.00
Calcium as Ca	l/gm	48	14	17	6	92.38	2.24	14.80	6.86	<150	101.62	2.47	16.28	108 79
Magnesium as Mg	l/gm	46	14	17	6	44.90	0.93	7.00	259.10	<100	49.39	1.02	7.70	259 10
Sodium as Na	l/gm	47	12	17	တ	88.94	21.43	26.30	1722.90	<200	97.83	23.57	28.93	1722 90
Chloride as Cl	l/gm	20	14	17	တ	127.45	21.15	35.90	2741.20	<200	140.20	23.27	39.49	2741 20
Sulphate as SO ₄	∥⁄gш	20	14	17	6	229.91	3.50	20.70	338.60	<400	252.90	3.85	22.77	372.46
Nitrate as NO _x -N	∥gш	20	14	17	6	90:0	0.18	4.70	0.02	<10	90:0	0.20	5.27	000
Fluoride as F	l/gm	46	13	17	O.	0.43	0.36	0.05	1.75	<1.0	0.47	0.39	90:0	1.75
O Commission Documents	1						Quaterna	ary Catchmer	Quaternary Catchments H70K. H90D. H90E. J11B	. H90E. J11B				
Cilemical Parameter	Ĭ		No. of	No. of Samples		Ā	Ambient GW quality or median1)	ality or med	an1)			Groundwater (Groundwater Quality Reserve3	93
		H70K	Q06H	H90E	J11B	H70K	H90D	H90E	J11B	BHN Reserve ²⁾	H70K	D06H	H90E	J11B
Hd		53	21	82	37	7.50	8.12	8.09	7.80	5.0 – 9.5	6.75-8.25	7.31-8.94	7.28-8.90	7.02-8.58
Electrical Conductivity	mS/m	53	24	88	37	121.00	102.70	179.00	81.30	<150	133.10	112.97	179.00	89.43
Calcium as Ca	l/gm	56	21	81	37	46.20	53.66	87.18	60.50	<150	50.82	59.05	95.89	66.55
Magnesium as Mg	mg/l	56	21	82	37	19.20	17.40	28.50	18.40	<100	21.12	19.14	31.35	20.24
Sodium as Na	mg/l	56	21	80	37	166.95	144.96	208.48	79.20	<200	183.65	159.45	208.48	87.12
Chloride as Cl	mg/l	92	20	84	37	273.10	247.79	358.72	94.70	<200	273.10	247.79	358.72	104.17
Sulphate as SO ₄	mg/l	56	73	82	37	29.88	33.16	36.65	09:89	<400	32.87	36.47	40.31	75.46
Nitrate as NO _x -N	mg/l	56	20	79	37	0.02	0.83	3.40	1.41	<10	0.02	0.91	3.74	1.55
Fluoride as F	l/gm	56	20	11	37	0.52	0.14	0.18	0.82	<1.0	0.57	0.15	0.19	06:0
:	:						Quatern	ary Catchme	Quaternary Catchments J11E, J11G, J12B, J12D	J12B, J12D				
Chemical Parameter	Cuit		No. of	No. of Samples		7	Ambient GW quality or median1)	uality or med	lian1)	DUM December		Sroundwater (Groundwater Quality Reserve	(64
		J11E	J11G	J12B	J12D	J11E	J11G	J12B	J12D	DIIN RESERVE-	J11E	J11G	J12B	J12D
Hd.		81	8	17	1	8.19	8.18	7.73	8.23	5.0 - 9.5	7.37-9.01	7.36-9.00	6.96-8.50	7.41–9.05
Electrical Conductivity	mS/m	8	8	17	Ξ	174.30	164.50	368.00	195.00	<150	174.30	164.50	368.00	195.00
Calcium as Ca	mg/l	12	20	17	11	98.70	115.05	117.10	68.30	<150	108.57	126.56	128.81	75.13
Magnesium as Mg	∥g/l	11	20	17	#	45.00	44.65	129.30	50.60	<100	49.50	49.12	129.30	55.66
Sodium as Na	l/gm	73	20	17	£	197.89	190.65	335.70	252.80	<200	217.68	200.00	335.70	252.80
Chloride as Cl	mg/l	75	82	17	=	250.10	294.70	726.10	415.00	<200	250.10	294.70	726.10	415.00
Sulphate as SO4	mg/l	12	20	17	Ξ	179.50	120.45	144.20	104.80	<400	197.45	132.50	158.62	115.28
Nitrate as NOx-N	mg/l	71	20	17	1	0:30	1.18	90.0	0.02	حا0	0.33	1.29	0.07	0.00
Fluoride as F	l/gm	29	20	17	1	0.88	0.92	0.80	0.53	<1.0	96.0	0.92	0.88	0.58

Chemical Parameter	Onit		No. of	No. of Samples		A	Amhient GW quality or median1)	sality or med	ant GW quality or median ¹⁾			Prolindarator	Groundwater Ouglity Becomes	33
		J12F	J12G	J12H	J12K	J12F	J12G	J12H	J12K	BHN Reserve ²⁾	J12F	J12G	J12H	J12K
Hd		10	11	13	10	8.23	8.20	7.75	8.13	5.0 - 9.5	7.41–9.05	7.38-9.02	6.98-8.53	7.32-8.94
Electrical Conductivity	mS/m	10	11,	13	10	306.50	323.00	157.00	462.00	<150	306.50	323.00	157.00	462.00
Calcium as Ca	l/gm	10	11	13	10	79.65	103.10	121.90	212.95	<150	87.62	113.41	134.09	212.95
Magnesium as Mg	l/gm	10	11	13	10	81.35	91.80	26.00	112.55	<100	89.49	100.98	28.60	123.81
Sodium as Na	l/gm	10	11	13	10	406.70	262.30	151.50	703.25	<200	406.70	262.30	166.65	703.25
Chloride as Cl	l/bm	10	11	13	10	691.30	795.60	258.70	1168.85	<200	691.30	795.60	258.70	1168.85
Sulphate as SO₄	l/gm	10	1	13	10	241.45	107.20	156.00	459.80	<400	265,60	117.92	171.60	459.80
Nitrate as NO _x -N	l/gm	10	1	13	10	0.02	0.02	0.02	0.02	<10	0.02	0.02	0.02	0.02
Fluoride as F	l/gm	10	1	13	10	0.56	0.50	0.39	0.55	<1.0	0.61	0.55	0.43	0.61
							Quaterna	iry Catchme	Quaternary Catchments J12L, J13B,	J21A, J21B				
Chemical Parameter	Onit		No. of	No. of Samples		Ā	Ambient GW quality or median1)	ality or med	lian1)	6		iroundwater (Groundwater Quality Reserve3)	3)
		J12L	J13B	J21A	J21B	J12L	J13B	J21A	J21B	BHN Keserve	J12L	J13B	J21A	J21B
抵		22	15	64	99	7.54	7.98	7.97	7.60	5.0 – 9.5	6.79-8.29	7.18-8.78	7.17-8.76	6.84-8.35
Electrical Conductivity	mS/m	57	15	64	99	25.50	418.00	61.40	100.50	<150	28.05	418.00	67.54	110.55
Calcium as Ca	l/gm	54	14	09	56	16.11	94.90	58.18	60.10	<150	17.72	104.39	64.00	66.11
Magnesium as Mg	l/gm	54	15	59	56	2.89	93.80	18.81	19.45	<100	3.18	103.18	20.69	21.40
Sodium as Na	l/gm	52	15	09	54	21.85	623.60	43.23	116.95	<200	24.03	623.60	47.55	128.65
Chloride as Cl	l/gm	23	15	58	56	30.71	906.39	18.77	104.70	<200	33.78	906.39	20.64	115.17
Sulphate as SO ₄	l/gm	54	15	22	54	7.55	253.60	75.14	113.80	<400	8.31	278.96	82.65	125.18
Nitrate as NO _x -N	l/gm	52	15	54	26	0.03	0.35	0.09	2.56	<10	0.03	0.39	0.09	2.81
Fluoride as F	l/bm	51	15	54	99	0.21	0.72	0.46	0.87	<1.0	0.23	0.79	0.51	96.0
	1111						Quaterna	ry Catchme	Quaternary Catchments J21C, J21D, J21E, J22B	J21E, J22B				
cnemical Parameter	JIIIO		No. of	No. of Samples		A	Ambient GW quality or median1)	ality or med	fian ¹⁾	OUND		Sroundwater (Groundwater Quality Reserve3)	3)
		J21C	J21D	J21E	J22B	JZ1C	J21D	J21E	J22B	DUN KESEIVE"	J21C	J21D	J21E	J22B
Hd		107	40	56	21	7.75	99'.	2.96	8.00	5.0 - 9.5	6.98-8.53	6.89-8.42	7.16-8.76	7.20-8.80
Electrical Conductivity	mS/m	107	40	92	21	76.40	85.20	78.80	74.20	<150	84.04	93.72	86.68	81.62
Calcium as Ca	l/gm	107	40	56	21	26.90	43.30	61.00	60.30	<150	62.59	47.63	67.10	66.33
Magnesium as Mg	l/gm	107	40	92	21	16.40	17.70	16.00	24.80	<100	18.04	19.47	17.60	27.28
Sodium as Na	l/gm	107	38	92	21	83.80	107.90	83.40	67.90	<200	92.18	118.69	91.74	74.69
Chloride as Cl	l/gm	107	40	56	21	76.90	102.60	93.00	57.20	<200	84.59	112.86	102.30	62.92
Sulphate as SO ₄	l/gm	107	38	56	21	83.50	95.70	53.05	63.40	<400	91.85	105.27	58.36	69.74
Nitrate as NOx-N	l/gm	107	33	56	21	3.13	3.55	2.23	1.95	<10	3.44	3.91	2.45	2.15
Fluoride as F	l/bm	107	40	26	24	0.68	1 00	0.05	004	7	1	100		

	:						Quatern	ary Catchme	Quaternary Catchments J22C, J22D, J22E, J22F	D, J22E, J22F				
Chemical Parameter	Cut		No. of S	No. of Samples			Ambient GW quality or median1)	uality or med	lian ¹⁾	0		Groundwater	Groundwater Quality Reserve ³⁾	e ³⁾
		J22C	J22D	J22E	J22F	J22C	J22D	J22E	J22F	DHN Keserve	J22C	J22D	J22E	J22F
Hd		56	46	80	24	8.00	7.94	7.79	7.80	5.0 - 9.5	7.20-8.80	7.15-8.73	7.01-8.57	7.02-8.58
Electrical Conductivity	mS/m	56	46	80	24	97.10	89.85	88.70	103.45	<150	106.81	98.84	97.57	113.80
Calcium as Ca	l/gm	56	46	80	24	50.15	44.95	61.80	82.10	<150	55.17	49.45	67.98	90.31
Magnesium as Mg	l/gm	56	46	80	24	27.00	24.80	21.00	18.95	<100	29.70	27.28	23.10	20.85
Sodium as Na	∥⁄gш	56	46	80	24	102.75	118.25	95.95	86.35	<200	113.03	130.08	105.55	94.99
Chloride as Cl	l/gm	56	46	80	24	94.00	102.75	92.40	109.40	<200	103.40	113.03	101.64	120.34
Sulphate as SO ₄	l/gm	56	46	80	24	123.80	121.30	90.80	110.70	<400	136.18	133.43	99.88	121.77
Nitrate as NO _x -N	l/gm	56	46	80	24	1.78	1.47	4.12	3.82	<10	1.95	1.61	4.53	4.20
Fluoride as F	∥/gш	56	46	80	24	1.03	1.10	1.05	0.89	<1.0	1.03	1.10	1.05	26:0
							Quatern	ary Catchme		J, J23A, J23C				
Chemical Parameter	Cuit		No. of §	No. of Samples		A	Ambient GW quality or median1)	uality or med	Jian1)	6		Groundwater	Groundwater Quality Reserve3)	e ³⁾
		J22H	J22J	J23A	J23C	J22H	J22J	J23A	J23C	BHN Keserve-	J22H	JZZJ	J23A	J23C
Ηď		32	56	39	10	7.79	7.83	7.93	7.78	5.0 - 9.5	7.01-8.56	7.05-8.61	7.14-8.72	7.00-8.56
Electrical Conductivity	mS/m	32	56	93	10	145.05	83.20	238.00	136.00	<150	145.05	91.52	238.00	149.60
Calcium as Ca	mg/l	32	56	36	10	105.60	50.75	125.25	126.75	<150	116.16	55.83	137.78	139.43
Magnesium as Mg	l/gm	32	26	36	10	38.25	20.45	16.26	32.70	<100	42.08	22.50	17.89	35.97
Sodium as Na	l/gm	32	56	35	10	158.05	86.90	342.80	143.70	<200	173.86	95.59	342.80	158.07
Chloride as Cl	l/gm	32	92	32	10	208.55	82.15	265.46	159.05	<200	229.41	90.37	265.46	174.96
Sulphate as SO ₄	l/gm	32	26	36	10	225.10	117.50	497.01	112.50	<400	247.61	129.25	497.01	123.75
Nitrate as NO _x -N	∥gш	32	56	35	10	3.31	3.02	0.04	1.10	<10	3.64	3.32	0.04	1.21
Fluoride as F	∥/gш	32	56	33	10	1.09	06.0	2.14	69:0	<1.0	1.19	0.99	2.14	0.76
action of Common	1						Quatern	ary Catchme	Quaternary Catchments J23D, J23F, J24A, J24B	:, J24A, J24B				
	5		No. of	No. of Samples		1 1	Ambient GW quality or median1)	uality or med	ian ¹⁾	OUN December	9	roundwater Q	Groundwater Quality Reserve3	3)
		J23D	J23F	J24A	J24B	JZ3D	J23F	J24A	J24B	DHN Keserve*	J23D	J23F	J24A	J24B
Hd		56	85	168	220	8.10	76'.2	7.77	7.79	5.0 - 9.5	7.29-8.91	7.17-8.76	6.99-8.54	7.01-8.56
Electrical Conductivity	mS/m	56	82	168	220	155.00	126.70	86.30	86.54	<150	155.00	139.37	94.93	95.19
Calcium as Ca	mg/i	56	83	168	213	98.95	51.07	70.60	76.59	<150	108.85	56.17	77.66	84.24
Magnesium as Mg	mg/l	56	8	168	214	40.65	28.60	18.55	17.15	<100	44.72	31.46	20.41	18.87
Sodium as Na	mg/l	56	80	168	210	166.55	120.85	91.25	83.50	<200	183.21	132.94	100.38	91.85
Chloride as Cl	mg/l	56	88	168	214	208.95	140.10	78.80	78.20	<200	208.95	154.11	86.68	86.02
Sulphate as SO ₄	mg/l	3 6	88	168	214	151.40	157.15	103.40	00:69	<400	166.54	172.86	113.74	75.90
Nitrate as NO _x -N	l/gm	26	88	168	212	1.89	0.12	1.85	3.45	<10	2.08	0.13	2.04	3.80
Fluoride as F	l/gm	56	84	168	508	0.79	0.48	0.92	0.81	<1.0	0.86	0.52	1.01	0.89

Chemical Parameter	Cait		No. of Samples	ımples		Ā	nbient GW qu	Ambient GW quality or median ¹⁾	an1)			Proundwater C	Groundwater Quality Reserve ³⁾	3)
		324C	J24D	J24E	J25A	J24C	J24D	J24E	J25A	BHN Reserve ²⁾	J24C	.124D	124F	125A
Hd		112	97	18	33	7.70	7.90	7.94	7.11	5.0 - 9.5	6 93 - 8 47	7 11_8 69	7 15.8 73	6.40-7.8
Electrical Conductivity	mS/m	112	97	18	33	96.70	146.70	161.50	20.90	<150	106.37	146.70	161.50	55.99
Calcium as Ca	l/gm	112	93	18	33	68.45	94.20	106.00	14.80	<150	75.30	103.62	116.60	16.28
Magnesium as Mg	l/gm	112	83	18	33	18.00	28.80	30.95	10.90	<100	19.80	34.68	34.05	11.99
Sodium as Na	l/gm	112	98	18	33	103.40	162.40	198.65	50.40	<200	113.74	178 64	198 65	55.44
Chloride as Cl	mg/l	112	36	18	33	120.20	194.50	213.80	96.50	<200	132.22	194.50	213.80	106.15
Sulphate as SO ₄	l/gm	112	88	18	33	78.40	114.00	105.70	26.40	<400	86.24	125.40	116.27	29.04
Nitrate as NO _x -N	l/gm	112	92	18	32	3.90	1.76	0.82	0.02	<10	4.28	194	080	0.02
Fluoride as F	l/gm	112	93	18	32	0.79	0.81	1.05	0.31	<1.0	0.87	0.89	1.05	0.34
Chemical Daramoter	:t -						Quatem	ary Catchmen	ts J25C, J311	Quaternary Catchments J25C, J31D, J32A, J32B				
viieiiitai ralaiiietei	5		No. of Samples	mples		Ā	nbient GW qu	Ambient GW quality or median1)	an1)		9	roundwater O	Groundwater Quality Reserve3	
		J25C	J31D	J32A	J32B	J25C	J31D	J32A	J32B	BHN Reserve	J25C	J31D	J32A	J32B
Hď		31	48	19	15	7.11	6.54	7.68	7.86	5.0 - 9.5	6.40-7.83	5.89–7.19	6.91-8.45	7.07-8.65
Electrical Conductivity	mS/m	31	48	19	15	50.90	14.06	165.80	187.00	<150	55.99	15.46	165.80	187.00
Calcium as Ca	mg/l	34	43	19	15	14.80	4.92	85.60	99.50	<150	16.28	5.41	94.16	109.45
Magnesium as Mg	mg/l	31	43	19	15	10.90	2.86	42.50	44.50	<100	11.99	3.14	46.75	48.95
Sodium as Na	l/gm	31	41	19	15	50.40	9.30	172.20	175.10	<200	55.44	10.23	189.42	192.61
Chloride as Cl	l/gm	31	43	19	15	96.50	23.80	203.20	242.60	<200	106.15	26.18	203.20	242.60
Sulphate as SO₄	∥/gш	34	43	19	15	26.40	9:90	180.30	170.80	<400	29.04	10.89	198.33	187.88
Nitrate as NO _x -N	mg/l	34	41	19	15	0.02	0.03	3.80	0.88	<10	0.02	0.03	4.18	0.96
Fluoride as F	∥⁄gш	31	33	19	15	0.31	0.29	1.06	0.99	<1.0	0.34	0.32	1.06	0.99
							Quaterni	Quaternary Catchments J32C, J32E, J33D, J33E	ts J32C, J32l	E, J33D, J33E				
Chemical Parameter	Cuit		No. of Samples	mples		A	nbient GW qu	Ambient GW quality or median1)	an1)	6	9	roundwater Q	Groundwater Quality Reserve3)	
		J32C	J32E	J33D	J33E	J32C	J32E	J33D	J33E	DHIN Keserve-	J32C	J32E	J33D	133E
굼		62	41	40	149	7.76	7.55	7.53	6.64	5.0 - 9.5	6.98-8.54	6.80-8.30	6.78-8.29	6.98-7.30
Electrical Conductivity	mS/m	53	41	40	149	127.40	19.80	19.80	12.10	<150	140.14	21.78	21.78	13.31
Calcium as Ca	l/gm	53	40	39	148	80.80	11.07	11.00	2.76	<150	88.88	12.17	12.10	3.04
Magnesium as Mg	//gm	29	40	39	148	30.90	3.50	3.50	2.07	<100	33.99	3.85	3.85	207
Sodium as Na	l/gm	73	33	88	146	143.90	12.40	12.39	13.40	<200	158.29	13.64	13.63	14.74
Chloride as CI	l/gm	29	40	89	147	170.70	23.87	23.64	22.99	<200	187.77	26.26	26.01	25.29
Sulphate as SO ₄	l/gm	23	39	æ	146	121.00	5.72	5.58	6.34	<400	133.10	6.29	6.14	6.97
Nitrate as NO _x -N	l/ĝш	23	93	88	147	2.15	0.04	0.04	0.19	<10	2.37	70.0	0.04	0.20
Fluoride as F	/bm	53	37	38	116	8	0.01	0.07		0.7				24.5

VIIGIIICAI FAIAIIICEE	=		No. of Samples	saldme		An	nbient GW qu	Ambient GW quality or median1)	an ¹⁾	nt GW quality or median ¹⁾		Froundwater C	Groundwater Quality Reserve3)	(3)
		J33F	J34A	J34B	J34D	J33F	J34A	J34B	J34D	BHN Keserve	J33F	J34A	J34B	J34D
Hd		20	36	7	22	6.82	6.33	6.77	6.56	5.0 - 9.5	6.14-7.50	5.70-6.96	6.09-7.45	5.90-7.22
Electrical Conductivity	mS/m	20	36	11	22	44.60	19.55	114.50	12.54	<150	49.06	21.51	125.95	13.79
Calcium as Ca	∥gm	20	36	11	22	11.95	3.26	46.30	2.39	<150	13.15	3.58	50.93	2.63
Magnesium as Mg	l/gm	20	36	11	22	7.05	3.44	21.80	1.73	<100	7.76	3.78	23.98	1.91
Sodium as Na	mg/l	70	36	11	22	34.25	25.95	136.70	15.40	<200	37.68	28.55	150.37	16.94
Chloride as Cl	mg/l	70	36	11	22	61.74	40.85	252.50	27.36	<200	67.92	44.94	252.50	30.10
Sulphate as SO ₄	l/gm	20	36	11	22	27.50	5.22	42.20	2.50	<400	30.25	5.74	46.42	275
Nitrate as NO _x -N	l/gm	89	36	11	22	0.08	0.17	0.37	0.22	<10	0.09	0.19	0.41	0.24
Fluoride as F	l/gm	69	36	11	22	0.22	0.11	0.29	0.08	<1.0	0.24	0.12	0.32	0.08
4 -							Quatern	irv Cafchmen	ts.134F.135	Quaternary Catchments, 134F, 135A, 135B, 135D				
Chemical Parameter	T C		No. of Samples	amples		An	abient GW au	Ambient GW quality or median1)	an ¹⁾		6	C removater O	Groundwater Quality Reserve3	
		J34F	J35A	J35B	J35D	J34F	J35A	J35B	J35D	BHN Reserve ²⁾	J34F	J35A	J35B	J35D
Hd		6	17	49	49	99'.2	8.07	7.01	7.64	5.0 - 9.5	6.89-8.43	7.26-8.88	6.31-7.71	6.88-8.40
Electrical Conductivity	mS/m	6	17	49	49	46.60	42.00	46.20	173.10	<150	51.26	46.20	50.82	173.10
Calcium as Ca	mg/l	6	17	47	48	6.87	62.70	6.23	86.30	<150	7.55	68.97	6.85	94.93
Magnesium as Mg	l/gm	6	17	47	48	7.70	6.30	8.70	35.65	<100	8.47	6.93	9.57	39.22
Sodium as Na	l/gm	6	17	45	48	61.80	11.10	57.30	145.70	<200	67.98	12.21	63.03	160.27
Chloride as Cl	l/gm	6	17	45	48	101.64	19.10	108.70	239.50	<200	111.81	21.01	119.57	239.50
Sulphate as SO ₄	l/gm	6	17	47	48	27.90	11.50	4.85	95.95	<400	30.69	12.65	5.34	105.55
Nitrate as NO _x -N	mg/l	6	17	45	48	0.05	0.16	4.51	0.64	<10	0.00	0.18	4.96	0.70
Fluoride as F	mg/l	6	17	43	47	0.48	0.16	0.10	0.52	<1.0	0.53	0.18	0.11	0.57
Chemical Parameter	Unit			6			Quaterna	iry Catchmen	ts J40D, J40i	Quaternary Catchments J40D, J40E, K10A, K10B				
			No. of Samples	mples		An	nbient GW qu	Ambient GW quality or median1)	3m ₁)	DUN December)	G	roundwater Q	Groundwater Quality Reserve3)	
		J40D	J40E	K10A	K10B	J40D	J40E	K10A	K10B	DUIN NESEIVE	J40D	J40E	K10A	K10B
На		48	83	20	14	7.30	7.52	7.88	7.51	5.0 - 9.5	6.57-8.03	6.77-8.28	7.09-8.67	6.76-8.26
Electrical Conductivity	mS/m	48	63	20	14	83.15	219.00	276.00	214.50	<150	91.47	219.00	276.00	214.50
Calcium as Ca	l/gm	48	63	20	14	12.41	59.40	52.50	32.87	<150	13.65	65.34	57.75	36.15
Magnesium as Mg	mg/l	48	63	20	14	14.72	31.97	44.17	35.74	<100	16.19	35.17	48.58	39.32
Sodium as Na	l/gm	45	63	20	14	131.41	288.45	399.60	288.65	<200	144.55	288.45	399.60	288.65
Chloride as Cl	l/gm	48	63	20	13	213.26	492.38	698.45	545.73	<200	213.26	492.38	698.45	545.73
Sulphate as SO4	//gm	45	63	20	14	31.69	65.21	92.08	59.60	<400	34.86	71.73	106.79	65.56
Nitrate as NOx-N	l/gm	47	62	50	12	60:0	0.04	0.05	0.27	<10	0.10	0.04	90:0	0.29
Fluoride as F	ma/l	48	63	200	45	0.43	000	000	100	0.77				

Chemical Parameter	Onit					Quater	Quaternary Catchments K10D, K30B, K50B	0D, K30B, K50B			
			No. of Samples	ımples	Am	bient GW qua	Ambient GW quality or median1)		0	broundwater Q	Groundwafer Quality Reserve3)
		K10D	K30B	K50B	K10D	K30B	K50B	DHN Keserve*/	K10D	K30B	K50B
핂		4	47	6	7.85	6.83	7.48	5.0 – 9.5	7.07-8.64	6.15-7.51	6.73-8.22
Electrical Conductivity	mS/m	=	47	o	257.00	27.72	61.90	<150	257.00	30.49	68.09
Calcium as Ca	mg/l	7	43	6	30.82	4.27	15.08	<150	33.90	4.70	16.58
Magnesium as Mg	mg/l	11	43	6	28.10	7.49	9.80	<100	30.91	8.24	10.78
Sodium as Na	l/gm	7	41	6	426.18	28.35	85.57	<200	426.18	31.19	94.13
Chloride as Cl	l/gm	4	42	6	533.12	41.92	139.99	<200	533.12	46.11	153.98
Sulphate as SO4	l/gm	7	44	6	09:99	7.95	17.54	<400	73.26	8.74	19.29
Nitrate as NO _x -N	mg/l	10	43	o	60:0	7.99	0.48	<10	0.10	8.79	0.52
Fluoride as F	l/gm	10	83	თ	0.84	0.16	0.34	<1.0	0.93	1.49	0.18

¹¹ Based on long term groundwater quality datasets (DWS Water Management System). Minimum number of analyses used for the statistical evaluation is nine (9).
²¹ Upper limit of Class I water quality (Drinking) (WRC et at. 2™ Edition, 1998, Volume 1: Assessment Guide); and
³¹ Median value plus 10%. Where a difference in the water quality values for the ambient groundwater quality and basic human needs was found; the lesser or more protective value was selected for the groundwater quality Reserve. Where the ambient groundwater quality was selected as the groundwater quality Reserve, the value was scaled up by 10 per cent provided that the value does not exceed the BHN Reserve.

Quaternary catchment	Water quality class (WRC, 1998)	Water quality parameters of concern
G40C	0	None
G40F	0	None
G40J	.0	None
G40L	ll ll	Sodium, Chloride
G40M	ii ii	Chloride
G50E		Chloride
G50F		Chloride
G50H	III	Electrical Conductivity, Magnesium, Sodium, Chloride, Sulpha
G50J	ii ii	Chloride, Sodium, Electrical Conductivity
H10A	ii ii	Sodium, Chloride, Electrical Conductivity
H10B	0	None
H10C	i	Chloride
H10F	0	None
H10G	0	None
H10H	i i	Chloride
H10L	0	None
H20A	0	None
H20B	0	None
H20D	0	None
H20E	0	None
H20F	0	None
H30A	l II	Chloride
H30C	0	None
H30D	0	None
H40A	ı	Electrical Conductivity, Calcium, Chloride
H40B	0	None
H40F	0	None
H70B	III	Electrical Conductivity, Magnesium, Sodium, Chloride
H70K	II II	Chloride
H90D	1	Chloride
H90E	l li	Electrical Conductivity, Sodium, Chloride
J11B		Electrical Conductivity, Sodium, Chloride
J11E	i	Electrical Conductivity Electrical Conductivity, Chloride
J11G		Electrical Conductivity, Chloride
J12B	III	
J12D	11	Electrical Conductivity, Magnesium, Sodium, Chloride Electrical Conductivity, Sodium, Chloride
J12F	III	Electrical Conductivity, Sodium, Chloride
J12G	111	Electrical Conductivity, Sodium, Chloride
J12H	II	Electrical Conductivity, Sodium, Chloride
J12H	III	Electrical Conductivity, Chloride Electrical Conductivity, Calcium, Sodium, Chloride, Sulphate
J12K	0	
J13B	III	None Electrical Conductivity, Sodium, Chloride
J21A	0	None Solidativity, Sodium, Chioride
J21B	1	Electrical Conductivity, Sodium, Chloride
J21C		
J21D		Electrical Conductivity Electrical Conductivity, Sodium, Chloride
		Electrical Conductivity, Sodium, Chloride
J21E J22B		Electrical Conductivity
J22C		Electrical Conductivity, Sodium
J22D		Electrical Conductivity, Sodium, Chloride
J22E		Electrical Conductivity
J22F	<u> </u>	Electrical Conductivity, Calcium, Chloride
J22H		Electrical Conductivity, Calcium, Sodium, Chloride
J22J	1	Electrical Conductivity
J23A	II .	Electrical Conductivity, Sodium, Chloride, Sulphate
J23C		Electrical Conductivity, Calcium, Sodium, Chloride
J23D	II.	Electrical Conductivity, Chloride
J23F		Electrical Conductivity, Sodium, Chloride
J24A		Electrical Conductivity
J24B		Electrical Conductivity
J24C	1	Electrical Conductivity, Sodium, Chloride
J24D	11	Electrical Conductivity, Chloride

Quaternary catchment	Water quality class (WRC, 1998)	Water quality parameters of concern	
J24E	II	Electrical Conductivity, Chloride	
J25A	0	None	
J25C	0	None	
J31D	0	None	
J32A	li li	Electrical Conductivity, Chloride	
J32B	II	Electrical Conductivity, Chloride	
J32C		Electrical Conductivity, Calcium, Sodium, Chloride	
J32E	0	None	
J33D	0	None	
J33E	0	None	
J33F	0	None	
J34A	0	None	
J34B	II	Chloride	
J34D	0	None	
J34F		Chloride	
J35A	0	None	
J35B		Chloride	
J35D	li	Electrical Conductivity, Chloride	
J40D	ll l	Chloride, Sodium	
J40E	ll ll	Electrical Conductivity, Sodium, Chloride	
K10A	l III	Electrical Conductivity, Sodium, Chloride	
K10B	l I	Electrical Conductivity, Sodium, Chloride	
K10D	III	Electrical Conductivity, Sodium, Chloride	
K30B	0	None	
K50B		Chloride	

7. ESTUARIES (WATER QUANTITY COMPONENT)

Table 7.1 Water Quantity

Quaternary Catchment	Estuary name	PES	REC	nMAR (MCM)	EWR (MCM nMAR)
G40B	Rooiels	В	В	*9.44	n/a
G40D	Palmiet	С	В	*177.94	n/a
G40G	Bot/Kleinmond	С	В	*77.67	n/a
G40H	Onrus	E	D	*4.74	n/a
G40L	Klein	С	В	*51.21	n/a
G40M	Uilkraals	D	С	*6.82	n/a
G40F	Heuningnes	С	А	29.53	n/a
H70K	Breede	В	В	1785.00	954.00
H80E	Duiwenhoks	В	А	89.29	73.01
H90C	Goukou	С	В	115.95	91.73
J40B	Gouritz	С	В	623.52	377.23
K10A	Blinde	С	С	n/a	n/a
K10B	Hartenbos	D	С	n/a	n/a
K10F	Klein Brak	С	С	50.67	37.66
K20A	Groot Brak	D	С	36.79	11.11
K30A	Maalgate	В	С	41.51	24.41
K30B	Gwaing	В	С	35.07	21.7
K30C	Kaaimans	В	В	53.6	41.3

Quaternary Catchment	Estuary name	PES	REC	nMAR (MCM)	EWR (MCM nMAR)
K30D	Wilderness system: Touws	В	А	29.66	25.15
K40D	Swartvlei	В	В	83.4	56.6
K40E	Goukamma	В	А	57.5	48.8
K50B	Kynsna	В	В	83.2	63.4
K60 E and F	Keurbooms	A/B	A/B	232	214.10
K60G	Noetsie	В	В	4.8	n/a
K60G	Piesang	D	B/C	n/a	n/a
K70A	Groot (Wes)	В	А	n/a	n/a
K70A	Matjie	В	В	5.10	n/a
K70A	Sout	А	А	11.22	n/a
K70B	Bloukrans	А	А	n/a	n/a

^{*}Present Day MAR

ESTUARY WATER QUALITY COMPONENT

Table 7.2: EcoSpecs and Thresholds of Potential Concern for the Blinde Estuary

Ecological component	EcoSpecs	Thresholds of Potential Concern
Hydrology	Maintain flow regime (small system needs most flows)	MAR does not vary by more than 10% from present Floods (indicated by 1:10 year event) do not reduce by more than 5% from present Base flows do not differ by more than 5% from present
Hydrodynamics	Maintain mouth state to create the require habitat for birds, fish, macrophytes, microalgae and water quality	Closed mouth state increase/decrease by 10% from present Presence of semi-closed mouth state with continuous outflow to sea. Average water depth <0.5 m (to be confirmed by monitoring) Rate of change in water level > 30% from present
Water quality	phosphate (DIP) concentrations not to cause exceedance of TPCs for macrophytes and microalgae	Turbidity> 10 NTU in low flow Secchi depth: to bottom DIN >100 µg/ℓ (average) DIP > 20 µg/ℓ (average) Concentrations in water column exceed target values as per SA Water Quality Guidelines for
Sediment dynamics	Flood regime to maintain the sediment distribution patterns and aquatic habitat (in stream physical habitat) so as not to exceed TPCs for biota Changes in sediment grain-size distribution patterns not to cause exceedance of TPCs in benthic invertebrates Change in average sediment composition and characteristics Change in average bathymetry	Average sediment composition (% fractions) along estuary change from baseline (to be measured) by 30% (per survey) Average depth along main channel change from 30% of baseline (to be determined) (system expected to experience significant fluctuation in bathymetry between flood and extended closed periods)
Microalgae	Maintain low/median phytoplankton/benthic microalgae biomass Prevent formation of phytoplankton blooms	Phytoplankton> 3.5 μg/ℓ (median) Benthic microalgae >23 mg/m² (median) Phytoplankton >20 μg/ℓ and/or cell density >10 000 cells/ml (once-off)
Macrophytes	Acacia spp.) in the riparian zone	20% change in the macrophyte area. (Reeds currently cover 0.04 ha.) Reeds occupy > 0.5 ha Macro-algal blooms cover > 50% of the open water area Presence of invasive aquatic macrophytes e.g. Azolla, water hyacinth etc. Invasive trees cover > 50% of riparian zone
nvertebrates	Establish presence/absence of sand prawn Callichirus kraussi on sand banks in lower	If present populations deviate from average baselines (as determined in first three visits) by more 30%
-ish	proportions (diversity and abundance) to that under the reference. Numerically, assemblage should comprise: la estuarine residents (50-80% of total	la estuarine residents <50% Ib marine and estuarine breeders <10% Ila obligate estuarine-dependent <10% Ilb estuarine associated species <5% Ilc marine opportunists < 20% III marine vagrants > 5% IV indigenous fish<1%

Ecological component	EcoSpecs	Thresholds of Potential Concern
	Ib marine and estuarine breeders (5-20%) Ila obligate estuarine-dependent (10-20%) Ilb estuarine associated species (5-15%), Ilc marine opportunists (20-80%) III marine vagrants (not more than 5%) IV indigenous fish (1-5%) V catadromous species (1-5%)	V catadromous species <1%
	Category Ia species should contain viable populations of at least two species (e.g. G.aestuaria, & Hyporamphus capensis).	
	Category IIa obligate dependents should be well represented by at least two large exploited species (i.e. L. lithognathus, Lichia amia).	
	REI (River Estuary Interface) species dominated by both Myxus capensis and G. aestuaria.	
Birds	Maintain population of original groups of birds present on the estuary	Number of birds in any group, other than species that are increasing regionally such as Egyptian geese, drops below the baseline median (determined by past data and or initial surveys) number of species and/or birds counted for three consecutive summer or winter counts

Table 7.3: EcoSpecs and Thresholds of Potential Concern for the Hartenbos Estuary

Ecological component	EcoSpecs	Thresholds of Potential Concern
Hydrology	Maintain at least present day base flows (to be confirmed)	MAR does not vary by more than 10% Floods (indicated by 1:10 year event) do not reduce by more than 5% from present Base flows do not increase by more than 50% from present
Hydrodynamics	Maintain mouth state to create the required habitat for birds, fish, macrophytes, microalgae and water quality	Closed mouth state does not decrease by 10% from present Average water level in system > 10% from present Tidal amplitude (when open) < 20%
Water quality	Salinity distribution not to cause exceedance of TPCs for fish, invertebrates, macrophytes and microalgae Turbidity and dissolved oxygen not to cause exceedance of TPCs for biota DIN/DIP concentrations not to cause exceedance of TPCs for macrophytes and microalgae Toxic substances not to cause exceedance of TPCs for biota	Average salinity along estuary decreases by 5 below baseline average (to be determined) DO < 5 mg/l in estuary Turbidity> 20 NTU in low flow Secchi in fresher part: <0.5 m DIN >200 µg/l average (to be confirmed) DIP > 50 µg/l average (to be confirmed) Concentrations in water column exceed target values as per SA Water Quality Guidelines for coastal marine waters (DWAF, 1995) Concentrations in sediment exceed target values as per WIO Region guidelines (UNEP/Nairobi Convention Secretariat and CSIR, 2009)
Sediment dynamics	Flood regime to maintain the sediment distribution patterns and aquatic habitat (instream physical habitat) so as not to exceed TPCs for biota Changes in sediment grain-size distribution patterns not to cause exceedance of TPCs in benthic invertebrates Change in average sediment composition and characteristics Change in average bathymetry	Average sediment composition (% fractions) along estuary change from baseline (to be measured) by 30% (per survey) Average depth along main channel changes from 30% of baseline (to be determined) (system expected to experience significant fluctuation in bathymetry between flood and extended closed periods)

Ecological component	EcoSpecs	Thresholds of Potential Concern
Microalgae	Maintain median phytoplankton/benthic microalgae biomass Prevent formation of phytoplankton blooms	Phytoplankton >8 µg/ℓ (median) Benthic microalgae >42 mg/m² (median) Phytoplankton >20 µg/ℓ and/or cell density >10 000 cells/ml (once-off) Dinoflagellates, chlorophytes and/or cyanobacteria >10% of relative abundance
Macrophytes	Maintain distribution of macrophyte habitats Prevent the spread of reeds into open water Prevent an increase in nutrients and macroalgal blooms Prevent the spread of invasive trees (e.g. Acacia spp.) in the riparian zone. Maintain integrity of salt marsh	20% change in macrophyte area (Reeds currently cover 9 ha, saltmarsh 47 ha.) Macroalgal blooms cover > 50% of the open water area Presence of invasive aquatic macrophytes e.g. Azolla, water hyacinth Invasive plants cover > 10% of flood plain Increase in bare areas in salt marsh because of decrease in moisture and increase in salinity >30% of salt marsh
Invertebrates	Establish presence/absence of sand prawn Callichirus kraussi on sand banks in lower estuary Establish abundance of the copepod Pseudodiaptomus hessei or estuarine congeneric in the zooplankton of the estuary	If present populations deviate from average baselines (as determined in first three visits) by more 30%
Fish	Fish assemblage should comprise the five estuarine association categories in similar proportions (diversity and abundance) to that under the reference. Numerically, assemblage should comprise: la estuarine residents (20-60%) lib marine and estuarine breeders (10-30%) lia obligate estuarine-dependent (20-40%) lib estuarine associated species (5-20%) lic marine opportunists (20-80%) lV indigenous fish (1-5%) V catadromous species (1-5%) Category la species should contain viable populations of at least two species (e.g. G.aestuaria, Hyporamphus capensis, Omobranchus woodii). Category lla obligate dependents should be well represented by large exploited species (i.e. A. japonicus, L. lithognathus, P. commersonnii, Lichia amia). REI species dominated by both Myxus capensis and G. aestuaria.	la estuarine residents <20% Ib marine and estuarine breeders < 10% Ila obligate estuarine-dependent <20% Ilb estuarine associated species <5% Ilc marine opportunists < 20% IV indigenous fish<1% V catadromous species <1% Ia represented only by <i>G. aestuaria</i> . Ila exploited species in very low numbers or absent REI species represented only by <i>G. aestuaria</i> , Myxus capensis absent
Birds	Maintain population of original groups of birds present on the estuary	Number of birds in any group, other than species that are increasing regionally such as Egyptian geese, drops below the baseline median (determined by past data and or initial surveys) number of species and/or birds counted for three consecutive summer or winter counts

Table 7.4: Eco-Specs and Thresholds of Potential Concern for the Piesang Estuary

Ecological component	EcoSpecs	Thresholds of Potential Concern
Hydrology	Maintain present day base flow as a minimum (to be confirmed)	MAR does not vary by more than 10% Floods (indicated by 1:10 year event) do not reduce by more than 5% from present. Base flows do not increase by more than 50% from present
Hydrodynamics	Maintain mouth state to create the required habitat for birds, fish, macrophytes, microalgae and water quality	Closed mouth state increase by 10% from present Average water level in system > 10% from present Tidal amplitude (when open) < 20%
Water quality	Salinity distribution not to cause exceedance of TPCs for fish, invertebrates, macrophytes and microalgae Turbidity and dissolved oxygen not to cause exceedance of TPCs for biota DIN/DIP concentrations not to cause exceedance of TPCs for macro-phytes and microalgae Toxic substances not to cause exceedance of TPCs for biota	Salinity > 20 (expected range 10-20) Salinity < 5 (expected range 10-20) DO < 5 mg/ℓ in estuary Turbidity> 10 NTU in low flow Secchi: to bottom DIN > 100 µg/ℓonce-off DIP > 20 µg/ℓonce-off Concentrations in water column exceed target values as per SA Water Quality Guidelines for coastal marine waters (DWAF, 1995) Concentrations in sediment exceed target values as per WIO Region guidelines (UNEP/Nairobi Convention Secretariat and CSIR, 2009)
Sediment dynamics	Flood regime to maintain the sediment distribution patterns and aquatic habitat (instream physical habitat) so as not to exceed TPCs for biota Changes in sediment grain-size distribution patterns not to cause exceedance of TPCs in benthic invertebrates Change in average sediment composition and characteristics Change in average bathymetry	Average sediment composition (% fractions) along estuary changes from baseline (to be measured) by 30% (per survey)
Microalgae	Maintain median phytoplankton/benthic microalgae biomass Prevent formation of phytoplankton blooms	Phytoplankton >3.5 µg/ℓ (median) Benthic microalgae >11 mg/m² (median) Phytoplankton >20 µg/ℓ and/or cell density >10 000 cells/ml (once-off)
Macrophytes	Maintain distribution of macrophyte habitats Prevent an increase in nutrient input leading to macroalgal blooms Control the spread of invasive plants in the riparian zone	Greater than 20 % change in the area covered by macrophytes (reeds and sedges currently cover 3.14 ha, submerged macrophytes and salt marsh present) Macroalgal blooms cover > 50% of the open water area during closed mouth conditions Invasive plants cover >5% of total habitat
Invertebrates	Maintain presenceof sand prawn Callichirus kraussi on sand banks in lower estuary Maintain presence of the copepod Pseudodiaptomus hessei or estuarine congeneric in the zooplankton of the estuary	Populations deviate from average baselines (as determined in first three visits) by more 30%

Ecological component	EcoSpecs	Thresholds of Potential Concern
Fish	Fish assemblage should comprise the five estuarine association categories in similar proportions (diversity and abundance) to that under the reference. Numerically, assemblage should comprise: la estuarine residents (50-80% of total abundance) lb marine and estuarine breeders (5-20%) lla obligate estuarine-dependent (10-20%) llb estuarine associated species (5-15%), llc marine opportunists (20-80%) lll marine vagrants (not more than 5%) lV indigenous fish (1-5%) V catadromous species (1-5%) Category la species should contain viable populations of at least two species (e.g. G.aestuaria, & Hyporamphus capensis. Category lla obligate dependents should be well represented by at least two large exploited species (i.e. L. lithognathus, Lichia amia). REI species dominated by both Myxus capensis and G. aestuaria.	la estuarine residents <50% Ib marine and estuarine breeders <10% Ila obligate estuarine-dependent <10% Ilb estuarine associated species <5% Ilc marine opportunists < 20% Ill marine vagrants > 5% IV indigenous fish<1% V catadromous species <1%
Birds	Maintain population of original groups of birds present on the estuary	Number of birds in any group, other than species that are increasing regionally such as Egyptian geese, drops below the baseline median (determined by past data and or initial surveys) number of species and/or birds counted for three consecutive summer or winter counts

Table 7.5: EcoSpecs for the Groot (Wes) Estuary

Ecological component	EcoSpecs	Thresholds of Potential Concern
Hydrology	Maintain present day base flow as a minimum (to be confirmed)	MAR does not vary by more than 10% Floods (indicated by 1:10 year event) do not reduce by more than 5% from present. Base flows do not increase by more than 50% from present
Hydrodynamics	Maintain mouth state to create the required habitat for birds, fish, macrophytes, microalgae and water quality	Closed mouth state increases by 10% from present Average water level in system > 10% from present Tidal amplitude (when open) < 20%
Water quality	Salinity distribution not to cause exceedance of TPCs for fish, invertebrates, macrophytes and microalgae Turbidity and dissolved oxygen not to cause exceedance of TPCs for biota DIN/DIP concentrations not to cause exceedance of TPCs for macrophytes and microalgae Toxic substances not to cause exceedance of TPCs for biota	Average salinity along estuary decreases by 5 below baseline average (to be determined) Average salinity < 10at the head of the estuary (expected average range 5-10 for most of the system) DO < 5 mg/\$\epsilon \text{ in estuary} Turbidity> 10 NTU in low flow Secchi: to bottom DIN >100 \mug/\$\epsilon \text{colored} \text{colored} DIP > 20 \mug/\$\epsilon \text{colored} \text{colored} Concentrations in water column exceed target values as per SA Water Quality Guidelines for coastal marine waters (DWAF, 1995) Concentrations in sediment exceed target values as per WIO Region guidelines (UNEP/Nairobi Convention Secretariat and CSIR, 2009)

Ecological component	EcoSpecs	Thresholds of Potential Concern
Sediment dynamics	Flood regime to maintain the sediment distribution patterns and aquatic habitat (instream physical habitat) so as not to exceed TPCs for biota Changes in sediment grain-size distribution patterns not to cause exceedance of TPCs in benthic invertebrates Change in average sediment composition and characteristics Change in average bathymetry	Average sediment composition (% fractions) along estuary changes from baseline (to be measured) by 30% (per survey) Average depth along main channel changes from 30% of baseline (to be determined) (system expected to experience significant fluctuation in bathymetry between flood and extended closed periods)
Microalgae	Maintain median phytoplankton/benthic microalgae biomass Prevent formation of phytoplankton blooms	Phytoplankton >3.5 μ g/ ℓ (median) Benthic microalgae >11 mg/m² (median) Phytoplankton >20 ug/ ℓ and/or cell density >10 000 cells/ml (once-off)
Macrophytes	Maintain distribution of macro-phyte habitats. Prevent an increase in nutrient input leading to macroalgal blooms. Control the spread of invasive plants in the riparian zone	Greater than 20 % change in the area covered by macro-phytes (reeds and sedges currently cover 2.54 ha salt marsh 0.76 ha) Macro-algal blooms cover > 50% of the open water area during closed mouth conditions. Invasive plants cover > 5% of total habitat
Invertebrates	Establish presence/absence of sand prawn Callichirus kraussi on sand banks in lower estuary Establish presence/absence of the copepod Pseudodiaptomus hessei or estuarine congeneric in the zooplankton of the estuary	If present populations deviate from average baselines (as determined in first three visits) by more 30%
Fish	v satadromodo oposios (* 570)	la estuarine residents <50% lb marine and estuarine breeders < 10% lla obligate estuarine-dependent <10% llb estuarine associated species <5% llc marine opportunists < 20% lll marine vagrants > 5% lV indigenous fish<1% V catadromous species <1%
Birds	Maintain population of original groups of birds present on the estuary	Number of birds in any group, other than species that are increasing regionally such as Egyptian geese, drops below the baseline median (determined by past data and or initial surveys) number of species and/or birds counted for three consecutive summer or winter counts

Table 7.6: EcoSpecs and Thresholds of Potential Concern for the Bloukrans Estuary

Ecological component	EcoSpecs	Thresholds of Potential Concern	
Hydrology	Maintain present flow regime	Varies more than 10% of MAR	
Hydrodynamics	Maintain mouth state to create the required habitat for birds, fish, macro-phytes, microalgae and water quality	Estuary mouth closes	
Water quality	Salinity distribution not to cause exceedance of TPCs for fish, invertebrates, macrophytes and microalgae Turbidity and dissolved oxygen not to cause exceedance of TPCs for biota DIN/DIP concentrations not to cause exceedance of TPCs for macrophytes and microalgae Toxic substances not to cause exceedance of TPCs for biota	DO < 5 mg/ℓ in estuary Turbidity> 10 NTU in low flow Secchi: to bottom DIN >100 μg/ℓonce-off DIP > 20 μg/ℓonce-off Concentrations in water column exceed target values as per SA Water Quality Guidelines for	
Sediment dynamics	Flood regime to maintain the sediment distribution patterns and aquatic habitat (instream physical habitat) so as not to exceed TPCs for biota Changes in sediment grain-size distribution patterns not to cause exceedance of TPCs in benthic invertebrates Change in average sediment composition and characteristics Change in average bathymetry		
Microalgae	Maintain median phytoplankton/benthic microalgae biomass Prevent formation of phytoplankton blooms	Phytoplankton >1.0 μ g/ ℓ (median) Benthic microalgae >11 μ g/m² (median) Phytoplankton >20 μ g/ ℓ and/or cell density >10 000 cells/ml (once-off)	
Macrophytes	The estuary habitats only consists of sand/mud banks (0.63 ha) and channel (2.88 ha), no macrophytes	N/A	
Invertebrates	Establish presence/absence of sand prawn Callichirus kraussi on sand banks in lower estuary Establish presence/absence of the copepod Pseudodiaptomus hessei or estuarine congeneric in the zooplankton of the estuary	If present populations deviate from average baselines (as determined in first three visits) by more 30%	

Ecological component	EcoSpecs	Thresholds of Potential Concern
Fish	Fish assemblage should comprise the five estuarine association categories in similar proportions (diversity and abundance) to that under the reference. Numerically, assemblage should comprise: la estuarine residents (50-80% of total abundance) lb marine and estuarine breeders (10-20%) lla obligate estuarine-dependent (10-20%) llb estuarine associated species (5-15%), llc marine opportunists (20-80%) lll marine vagrants (not more than 5%) lV indigenous fish (1-5%) V catadromous species (1-5%) Category la species should contain viable populations of at least 4 species (<i>G.aestuaria, Hyporamphus capensis, Omobranchus woodii</i>). Category lla obligate dependents should be well represented by large exploited species (<i>A. japonicus, L. lithognathus, P. commersonii, Lichia amia</i>). REI species dominated by both <i>Myxus capensis</i> and <i>G. aestuaria</i> .	la estuarine residents <50% Ib marine and estuarine breeders < 10% Ila obligate estuarine-dependent < 10% Ilb estuarine associated species < 5% Ilc marine opportunists < 20% III marine vagrants > 5% IV indigenous fish< 1% V catadromous species <1%
Birds	Maintain population of original groups of birds present on the estuary	Number of birds in any group, other than species that are increasing regionally such as Egyptian geese, drops below the baseline median (determined by past data and or initial surveys) number of species and/or birds counted for three consecutive summer or winter counts

Table 7.7: EcoSpecs and TPCs for the Goukou Estuary

EcoSpecs	TPC
Water quality	
Salinity distribution not to cause exceedance of TPCs for biota.	 Salinity > 0 at head of estuary. Average salinity in Zone D > 5. Average salinity in Zone C > 20. Average salinity 5 km upstream from mouth > 20 more than three months of the year.
System variables (pH, dissolved oxygen and turbidity) not to cause exceedance of TPCs for biota.	River inflow: 6.0 < pH > 7.5. DO < 5 mg/L. Suspended solids >5 mg/L (low flow). Estuary: Average turbidity >10 Nephelometric Turbidity Units (NTU) (low flow) Average 6.0 < pH > 8.5 (increasing with increase in salinity). Average DO < 5 mg/L.
Inorganic nutrient concentrations (NO ₃ -N, NH ₃ -N and PO ₄ -P) not to cause in exceedance of TPCs for macrophytes and microalgae.	River inflow: NO _x -N >150 µg/L over two consecutive months. NH ₃ -N > 20 µg/L over two consecutive months. PO ₄ -PP > 20 µg/L over two consecutive months. Estuary (except during upwelling or floods): Average NO _x -N 150 µg/L single concentration > 200 µg/L.

EcoSpecs	TPC
	 Average NH₃-N > 20 μg/L during survey, single concentration > 100 μg/L. Average PO₄-P > 20 μg/L during survey, single concentration > 50 μg/L.
Presence of toxic substances (e.g. trace metals and pesticides/herbicides) not to cause exceedance of TPCs for biota.	River inflow: Trace metals (to be refined and confirmed through future monitoring) Pesticides/herbicides (to be refined and confirmed through future monitoring). Estuary: Concentrations in water column exceed target values as per SA Water Quality Guidelines for Coastal Marine Waters (DWAF, 1995). Concentrations in sediment exceed target values as per WIO Region guidelines (UNEP/Nairobi Convention Secretariat and CSIR, 2009)

Table 7.8: Water Quality EcoSpecs and TPCs for the Gouritz Estuary

Component	EcoSpecs	Thresholds of Potential Concern
	Salinity distribution not to cause exceedance of TPCs for biota.	 Salinity > 0 at head of estuary Average salinity in Site 11, 1 km upstream of bridge > 5 Average salinity in Zone C > 20 Average salinity 11 km upstream from mouth > 20 more than three months of the year Salinity > 40 in saltmarsh sediments (linked to decrease in moisture and drying of floodplain habitat).
	System variables (pH, dissolved oxygen and turbidity) not to cause exceedance of TPCs for biota.	River inflow: 7.0 < pH > 8.3 DO < 5 mg/ℓ Suspended solids > 5 mg/ℓ (low flow) Estuary: Average turbidity > 10 NTU (low, calm condition flow, wind mixing can increase turbidity to 20-40 NTU) Average 7.0 < pH > 8.5 (increasing with increase in salinity) Average DO < 5 mg/ℓ
Water Quality	Inorganic nutrient concentrations (NO ₃ -N, NH ₃ -N and PO ₄ -P) not to cause exceedance of TPCs for macrophytes and microalgae.	River inflow: NOx-N > 100 μg/ℓ over two consecutive months NH3-N > 20 μg/ℓ over two consecutive months PO4-P > 20 μg/ℓ over two consecutive months Estuary (except during upwelling or floods): Average NOx-N > 100 μg/ℓ single concentration > 150 μg/ℓ Average NH3-N > 20 μg/ℓ during survey, single concentratior > 100 μg/ℓ Average PO4-P > 20 μg/ℓ during survey, single concentratior > 50 μg/ℓ
	Presence of toxic substances (e.g. trace metals and pesticides/herbicides) not to cause exceedance of TPCs for biota.	River inflow: Trace metals (to be confirmed) Pesticides/herbicides (to be confirmed) Estuary Concentrations in water column exceed target values as per SA Water Quality Guidelines for coastal marine waters (DWAF, 1995) Concentrations in sediment exceed target values as per Western Indian Ocean (WIO) Region guidelines (UNEP/Nairobi Convention Secretariat and CSIR, 2009)

Table 7.9: Eco Specs and TPCs for the Klein Brak Estuary

Component	EcoSpecs	Thresholds of Potential Concern
Water quality	Salinity distribution not to cause exceedance of TPCs for biota.	 No salinity gradient in the upper reaches of the estuary (Zone D and F) No REI in the upper reaches of the estuary (Zone D and F) Salinity > 35
	System variables (pH, dissolved oxygen and turbidity) not to cause exceedance of TPCs for biota.	River inflow: 7.0 < pH > 8.5 DO < 5 mg/ℓ Suspended solids > 5 mg/ℓ (low flow) Estuary: Average turbidity >10 NTU (low flow) Average 7.0 < pH > 8.5 (increasing with increase in salinity Average DO < 5 mg/ℓ
	Inorganic nutrient concentrations (NO ₃ -N, NH ₃ -N and PO ₄ -P) not to cause in exceedance of TPCs for macro-phytes and microalgae.	River inflow: NO _x -N >150 μg/ℓ over two consecutive months NH ₃ -N> 20 μg/ℓ over two consecutive months PO ₄ -P > 20 μg/ℓ over two consecutive months Estuary (except during upwelling or floods): Average NO _x -N > 150 μg/ℓ during survey, single concentration > 200 μg/ℓ Average NH ₃ -N > 20 μg/ℓ during survey, single concentration > 100 μg/ℓ Average PO ₄ -P > 20 μg/ℓ during survey, single concentration > 50 μg/ℓ
	Presence of toxic substances (e.g. trace metals and pesticides/herbicides) not to cause exceedance of TPCs for biota.	River inflow: Trace metals (to be confirmed) Pesticides/herbicides (to be confirmed) Estuary Concentrations in water column exceed target values as per SA Water Quality Guidelines for coastal marine waters (DWAF, 1995) Concentrations in sediment exceed target values as per WIO Region guidelines (UNEP/Nairobi Convention Secretariat and CSIR, 2009)

Table 7.10: EcoSpecs and TPCs for the Wilderness System

Component	EcoSpecs	Thresholds of Potential Concern
Water quality	Salinity	Estuary in the closed state: Average salinity in Zone A < 12, Average salinity in Zone B: < 10 Average salinity in Zone C < 5 Lakes average salinity +2 from baseline (2013) and variability do not increase as below: Serpentine: 12 ± 10 Eilandvlei: 8 ± 5 Langvlei: 10 ± 4 Rondevlei: 10 ± 5

System variables (pH, dissolved oxygen and turbidity) not to cause exceedance of TPCs for biota.	River inflow: • 6.0 < pH > 7.0 (Touw) • 7.0 < pH > 8.0 (Duiwe) • DO < 5 mg/ℓ • Suspended solids > 5 mg/ℓ (low flow) Estuary: • Average turbidity > 5 NTU (low flow) • Average 6.0 < pH > 8.5 (increasing with increase in salinity) • Average DO < 5 mg/ℓ Lakes: • Average turbidity > 5 NTU • Average 7.0 < pH > 8.5 • Average DO < 5 mg/ℓ
Inorganic nutrient concentrations (NO ₃ -N, NH ₃ -N and PO ₄ -P) not to cause exceedance of TPCs for macro-phytes and microalgae.	River inflow: NO _x -N > 50 μg/ℓ over two consecutive months NH ₃ -N > 10 μg/ℓ over two consecutive months PO ₄ -P > 10 μg/ℓ over two consecutive months Estuary (except during upwelling or floods): Average NO _x -N > 50 μg/ℓ single concentration > 100 μg/ℓ Average NH ₃ -N > 10 μg/ℓ during survey, single concentration > 100 μg/ℓ Average PO ₄ -P > 10 μg/ℓ during survey, single concentration > 50 μg/ℓ Lakes: Average NO _x -N > 50 μg/ℓ during survey, single concentration > 100 μg/ℓ Average NO _x -N > 50 μg/ℓ during survey (to be confirmed) Average PO ₄ -P > 20 μg/ℓ during survey (to be confirmed)
Presence of toxic substances (e.g. trace metals and pesticides/herbicides) not to cause exceedance of TPCs for biota.	River inflow: Trace metals (to be confirmed) Pesticides/herbicides (to be confirmed) Estuary: Concentrations in water column exceed target values as per SA Water Quality Guidelines for coastal marine waters (DWAF, 1995) Concentrations in sediment exceed target values as per WIO Region guidelines (UNEP/Nairobi Convention Secretariat and CSIR, 2009)

Table 7.11: Water quality present state assessment for H8DUIW-EWR1

Water Quality Constituents	PES Value	Category/Comment
	Inorga	nic salt ions (mg/l)
Sulphate as SO ₄	N/A	-
Sodium as Na	382.2	Exceeds the ≤ 70 mg/L (TWQR) for Agricultural Use: Irrigation.
Magnesium as Mg	67.4	No guideline.
Calcium as Ca	55.0	No guideline.
Chloride as CI	805.4	Exceeds the ≤ 100 mg/L (TWQR) for Agricultural Use: Irrigation.
Potassium as K	9.25	No guideline.
	Electrical	conductivity (mS/m)
	272	E/F: RC = 80 mS/m.
	Nu	itrients (mg/l)
SRP	0.014	A
TIN	0.118	A

Water Quality Constituents PES Value		Category/Comment		
	Phy	sical variables		
pH (5 th + 95 th %ile) 6.6 and		В		
Temperature (°C)	N/A	A/B. Impacts expected at low flows.		
Dissolved oxygen (mg/L)	N/A	B. Impacts expected at low flows.		
Turbidity (NTU)		B. Changes in turbidity appear to be largely related to natural with minor man-made modifications, e.g. gravel mining upstream		
	Res	ponse variables		
Chl-a: phytoplankton (ug/L) N/A		N/A		
Macroinvertebrate score (MIRAI) SASS score ASPT score	50.7% 78 56	D		
Diatoms	11.1	C/D (n = 1, Jan 2014)		
Fish score (FRAI) 51.6%		D (all estuarine spp. that moved into the freshwater zone and aliens).		
		Toxics		
Ammonia (as N)	0.003	A		
Fluoride (as F)	0.33	A		
OVERALL SITE CLASSIFICATION (PAI model)		C (73.2%)		

⁽a) N/A- No data were available for this assessment.

Table 7.12: H8DUIW-EWR1: Water quality (C category) EcoSpecs and TPCs

Metrics	EcoSpecs	TPCs
Inorganic salt ions		
Sulphate as SO ₄	N/A	N/A
Sodium as Na	The 95 th percentile of the data must be ≤ 380 mg/L.	The 95 th percentile of the data must be 300 - 380 mg/L.
Magnesium as Mg	The 95 th percentile of the data must be ≤ 67 mg/L.	The 95 th percentile of the data must be 53.5 - 67 mg/L.
Calcium as Ca	The 95 th percentile of the data must be ≤ 55 mg/L.	The 95 th percentile of the data must be 44 - 55 mg/L.
Chloride as Cl	The 95 th percentile of the data must be ≤ 800 mg/L.	The 95 th percentile of the data must be 640 - 800 mg/L.
Potassium as K	The 95 th percentile of the data must be ≤ 9 mg/L.	The 95 th percentile of the data must be 7 - 9 mg/L.
Physical Variables		
Electrical conductivity (mS/m)	The 95 th percentile of the data must be ≤ 270 mS/m.	The 95 th percentile of the data must be 210 - 270 mS/m.
рН	The 5 th percentile of the data must be 6.5. – 8.0, and the 95 th percentile 8.0 - 8.8.	The 5 th percentile of the data is \leq 6.3 and the 95 th percentile is \geq 8.6.
Temperature ^(a)	Natural temperature range.	Initiate baseline monitoring for this variable.
Dissolved oxygen ^(a) (DO)	The 5 th percentile of the data must be \geq 7.0 mg/L.	The 5 th percentile of the data must be 7.2 - 7.0 mg/L. Initiate baseline monitoring for this variable.
Turbidity ^(a)	Changes in turbidity are related to minor man-made modifications (e.g. gravel mining upstream). Some silting of habitats is expected.	Initiate baseline monitoring for this variable.
Nutrients	•	

Metrics EcoSpecs		TPCs	
TIN	The 50 th percentile of the data must be ≤ 0.25 mg/L.	The 50th percentile of the data must be 0.2 - 0.25 mg/L.	
		The 50 th percentile of the data must be 0.012 - 0.015 mg/L.	
Response variables		*!	
Chl-a phytoplankton	The 50 th percentile of the data must be < 15 μ g/L.	The 50 th percentile of the data must be 12 - 15 µg/L.	
Chl-a periphyton	The 50 th percentile of the data must be \leq 12 mg/m ² .	The 50 th percentile of the data must be 10 - 12 mg/m ² .	
Toxics		•	
Fluoride	The 50 th percentile of the data must be \leq 1.5 mg/L.	The 50 th percentile of the data must be 1.2 - 1.5 mg/L.	
Ammonia (NH ₃ -N) The 50 th percentile of the data must be ≤ 0.015 mg/L.		The 50 th percentile of the data must be 0.012 - 0.015 mg/L.	
Other toxics	The 95 th percentile of the data must be within the Target Water Quality Range (TWQR) as stated in DWAF (1996) or the A Category boundary as stated in DWAF (2008).	An impact is expected if the 95 th percentile of the data exceeds the TWQR as stated in DWAF (1996) or the upper limit of the A Category boundary as stated in DWAF (2008).	

⁽a) N/A- No data were available for this assessment

Table 7.13: EcoSpecs and TPCs for the Duiwenhoks Estuary

Component EcoSpecs		Thresholds of Potential Concern	
Water quality	Salinity distribution not to cause exceedance of TPCs for biota.	 Salinity > 0 at head of estuary Average salinity in Zone D > 5 Average salinity in Zone C > 20 Average salinity 5 km upstream from mouth > 20 more than three months of the year 	
	System variables (pH, dissolved oxygen and turbidity) not to cause exceedance of TPCs for biota.	River inflow: • 6.0 < pH > 7.5 • DO < 5 mg/ℓ • Suspended solids > 5 mg/ℓ (low flow) Estuary: • Average turbidity > 10 NTU (low flow) • Average 6.0 < pH > 8.5 (increasing with increase in salinity) • Average DO < 5 mg/ℓ	
	Inorganic nutrient concentrations (NO ₃ -N, NH ₃ -N and PO ₄ -P) not to cause an exceedance of TPCs for macrophytes and microalgae.	River inflow: NOx-N >150 µg/ℓ over 2 consecutive months NH3-N > 20 µg/ℓ over 2 consecutive months PO4-P > 20 µg/ℓ over 2 consecutive months Estuary (except during upwelling or floods): Average NOx-N > 150 µg/ℓ single concentration > 200 µg/ℓ Average NH3-N > 20 µg/ℓ during survey, single concentration > 100 µg/ℓ Average PO4-P > 20 µg/ℓ during survey, single concentration > 50 µg/ℓ	
	Presence of toxic substances (e.g. trace metals and pesticides/herbicides) not to cause exceedance of TPCs for biota.	River inflow: Trace metals (to be confirmed) Pesticides/herbicides (to be confirmed) Estuary Concentrations in water column exceed target values as per SA Water Quality Guidelines for coastal marine waters (DWAF, 1995) Concentrations in sediment exceed target values as per WIO Region guidelines (UNEP/Nairobi Convention Secretariat and CSIR, 2009)	

Table 7.14: EcoSpecs and TPCs for the Goukou Estuary

EcoSpecs	TPC
Water quality	4
Salinity distribution not to cause exceedance of TPCs for biota.	 Salinity > 0 at head of estuary. Average salinity in Zone D > 5. Average salinity in Zone C > 20. Average salinity 5 km upstream from mouth > 20 more than three months of the year.
System variables (pH, dissolved oxygen and turbidity) not to cause exceedance of TPCs for biota.	River inflow: 6.0 < pH > 7.5. DO < 5 mg/L. Suspended solids >5 mg/L (low flow). Estuary: Average turbidity >10 Nephelometric Turbidity Units (NTU) (low flow). Average 6.0 < pH > 8.5 (increasing with increase in salinity). Average DO < 5 mg/L.
Inorganic nutrient concentrations (NO₃-N, NH₃-N and PO₄-P) not to cause in exceedance of TPCs for macrophytes and microalgae.	River inflow: NO _x -N >150 µg/L over two consecutive months. NH ₃ -N > 20 µg/L over two consecutive months. PO ₄ -PP > 20 µg/L over two consecutive months. Estuary (except during upwelling or floods): Average NO _x -N 150 µg/L single concentration > 200 µg/L. Average NH ₃ -N > 20 µg/L during survey, single concentration > 100 µg/L. Average PO ₄ -P > 20 µg/L during survey, single concentration > 50 µg/L.
Presence of toxic substances (e.g. trace metals and pesticides/herbicides) not to cause exceedance of TPCs for biota.	River inflow: Trace metals (to be refined and confirmed through future monitoring). Pesticides/herbicides (to be refined and confirmed through future monitoring).

Table 7.15: Water Quality EcoSpecs and TPCs for the Gouritz Estuary

Component	EcoSpecs	Thresholds of Potential Concern
Water Quality	Salinity distribution not to cause exceedance of TPCs for biota.	 Salinity > 0 at head of estuary Average salinity in Site 11, 1 km upstream of bridge > 5 Average salinity in Zone C > 20 Average salinity 11 km upstream from mouth > 20 more than three months of the year Salinity > 40 in saltmarsh sediments (linked to decrease in moisture and drying of floodplain habitat).
	System variables (pH, dissolved oxygen and turbidity) not to cause exceedance of TPCs for biota.	River inflow: 7.0 < pH > 8.3 DO < 5 mg/ℓ Suspended solids > 5 mg/ℓ (low flow) Estuary: Average turbidity > 10 NTU (low, calm condition flow, wind mixing can increase turbidity to 20-40 NTU) Average 7.0 < pH > 8.5 (increasing with increase in salinity) Average DO < 5 mg/ℓ
	Inorganic nutrient concentrations (NO ₃ -N, NH ₃ -N and PO ₄ -P) not to cause exceedance of TPCs for macrophytes and microalgae.	River inflow: NOx-N > 100 μg/ℓ over two consecutive months NH3-N > 20 μg/ℓ over two consecutive months PO4-P > 20 μg/ℓ over two consecutive months Estuary (except during upwelling or floods): Average NOx-N > 100 μg/ℓ single concentration > 150 μg/ℓ Average NH3-N > 20 μg/ℓ during survey, single concentration > 100 μg/ℓ Average PO4-P > 20 μg/ℓ during survey, single concentration > 50 μg/ℓ
	Presence of toxic substances (e.g. trace metals and pesticides/herbicides) not to cause exceedance of TPCs for biota.	River inflow: Trace metals (to be confirmed) Pesticides/herbicides (to be confirmed) Estuary Concentrations in water column exceed target values as per SA Water Quality Guidelines for coastal marine waters (DWAF, 1995) Concentrations in sediment exceed target values as per Western Indian Ocean (WIO) Region guidelines (UNEP/Nairobi Convention Secretariat and CSIR, 2009)

Table 7.16: EcoSpecs and TPCs for the Wilderness System

Component	EcoSpecs	Thresholds of Potential Concern	
Water quality	Salinity	Estuary in the closed state: Average salinity in Zone A < 12, Average salinity in Zone B: < 10 Average salinity in Zone C < 5 Lakes average salinity +2 from baseline (2013) and variability do not increase as below: Serpentine: 12 ± 10 Eilandvlei: 8 ± 5 Langvlei: 10 ± 4 Rondevlei: 10 ± 5	
	System variables (pH, dissolved oxygen and turbidity) not to cause exceedance of TPCs for biota.	River inflow: • 6.0 < pH > 7.0 (Touw) • 7.0 < pH > 8.0 (Duiwe) • DO < 5 mg/ℓ • Suspended solids > 5 mg/ ℓ (low flow) Estuary: • Average turbidity > 5 NTU (low flow) • Average 6.0 < pH > 8.5 (increasing with increase in salinity) • Average DO < 5 mg/ℓ Lakes: • Average turbidity > 5 NTU • Average 7.0 < pH > 8.5 • Average DO < 5 mg/ℓ	
	Inorganic nutrient concentrations (NO ₃ -N, NH ₃ -N and PO ₄ -P) not to cause exceedance of TPCs for macro-phytes and microalgae.	River inflow: NO _x -N > 50 μg/ℓ over two consecutive month NH ₃ -N > 10 μg/ℓ over two consecutive month: PO ₄ -P > 10 μg/ℓ over two consecutive month: Estuary (except during upwelling or floods): Average NO _x -N > 50 μg/ℓ single concentration > 100 μg/ℓ Average NH ₃ -N > 10 μg/ℓ during survey, single concentration > 100 μg/ℓ Average PO ₄ -P > 10 μg/ℓ during survey, single concentration > 50 μg/ℓ Lakes: Average NO _x -N > 50 μg/ℓ during survey, single concentration > 100 μg/ℓ Lakes: Average NO _x -N > 50 μg/ℓ during survey (to be confirmed) Average PO ₄ -P > 20 μg/ℓ during survey (to be confirmed)	
	Presence of toxic substances (e.g. trace metals and pesticides/herbicides) not to cause exceedance of TPCs for biota.	River inflow: Trace metals (to be confirmed) Pesticides/herbicides (to be confirmed) Estuary:	

8. WETLANDS

Table 8.1: Wetlands - Quaternary Protection Specification

Quaternary catchment	EIS	PES	REC	How to achieve the REC
K10A	Moderate	С	С	
K10B	Moderate	С	С	
K10C	Moderate	B/C	B/C	
K10D	Moderate	B/C	B/C	Control invasive alien vegetation, erosion and
K10E	Moderate	B/C	B/C	land-use encroachment.
K10F	Moderate	С	С	
K20A	Moderate	С	С	
K30A	High	С	С	
K30B	High	D	C/D	Buffers in urban and agricultural areas, manage water quality, erosion and invasive vegetation.
K30C	Moderate	D	D	
K30D	Very High	В	В	
K40A	Moderate	D	D	
K40B	Moderate	С	С	Control invasive alien vegetation, erosion and
K40C	Moderate	С	С	land-use encroachment.
K40D	Very High	В	В	
K40E	Moderate	B/C	B/C	
K50A	Moderate	B/C	B/C	
K50B	High	C/D	С	Protect and improve the condition of remaining wetland patches, control invasive vegetation.
K60A	Moderate	В	В	
K60B	Moderate	В	В	
K60C	Moderate	В	В	
K60D	High	Α	А	
K60E	High	С	С	
K60F	High	С	С	
K60G	Moderate	С	С	
K70A	Moderate	С	С	Control invasive alien vegetation, erosion and land-use encroachment.
K70B	Low	А	А	land use enerodemnent.
H80A	HIGH	C/D	С	
H80B	Moderate	С	С	
H80C	Moderate	D	D	
H80D	Moderate	D	D	
⊣80E	Moderate	C/D	C/D	
-190A	Moderate	С	С	

Quaternary catchment		PES	REC	How to achieve the REC
Н90В	Moderate	D	D	
H90C	Moderate	D	D	
H90D	Moderate	С	С	
H90E	Moderate	C/D	C/D	
J11D	Low	С	С	
J11F	Moderate	С	С	
J11G	Moderate	В	В	
J12A	Moderate	В	В	
J12B	Moderate	В	В	
J12J	Moderate	В	В	
J12K	Moderate	В	В	
J12L	Moderate	С	С	
J21A	Moderate	B/C	B/C	7
J21B	Moderate	В	В	
J22B	Moderate	В	В	Control Inventor allege
J22G	Moderate	В	В	Control invasive alien vegetation, erosion and land-use encroachment.
J22K	Low	B/C	B/C	
J23E	Low	С	С	
J23J	Moderate	В	В	
J24F	Low	С	С	
J25A	Low	В	В	
J33B	Low	С	С	
J33E	Low	С	С	
J34C	Low	С	С	
J34D	Low	С	С	
J34E	Low	C/D	C/D	
J34F	Low	D	D	
J40B	Low	В	В	
J40C	Moderate	C/D	C/D	
J40D	Moderate	D	D	
J40E	High	С	С	

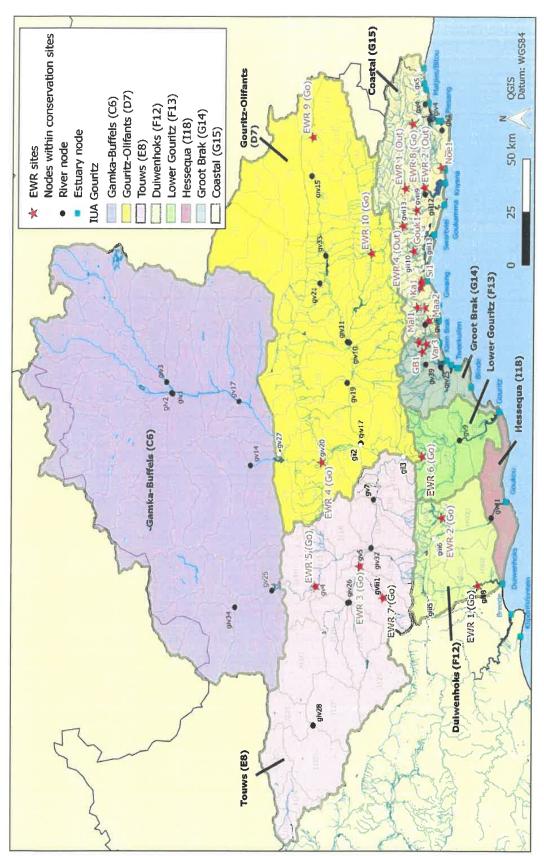


Figure 1: Locations of Gouritz region river/estuary nodes and EWR sites

97

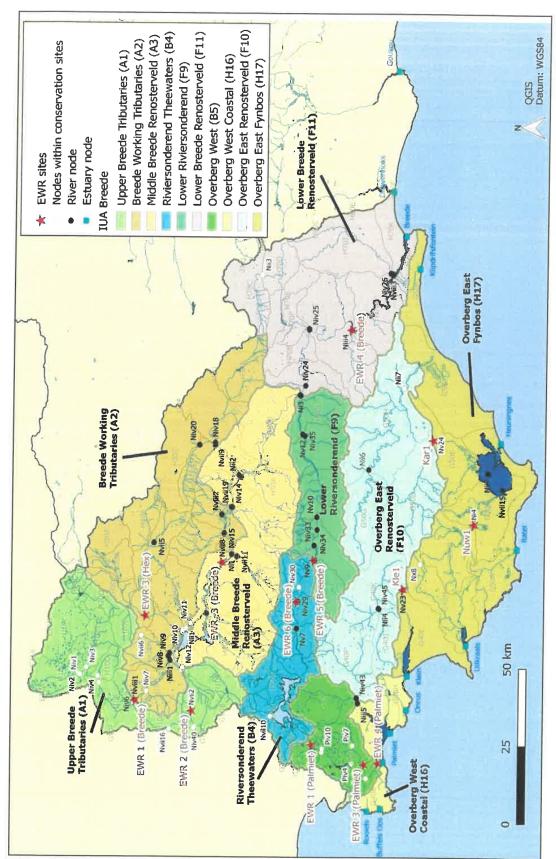


Figure 2: Locations of Breede-Overberg region river/estuary nodes and EWR sites

86